Field-Haas-Stuart May 1, 2001

Vertex Cut

In our paper we selected zero or one vertex in |z| < 100 cm with $|z-z_v| < 2$ cm, $|CTC d_0| < 1$ cm, $P_T > 0.5$ GeV/c, and $|\eta| < 1$. Here we study the effect of requiring |z| < 60 cm instead of 100 cm. In addition, we look at an |z| < 10 cm cut to see if the size of the interaction region ($\sigma_z = 30$ cm) has a big effect on the data.

Plot 1: Average charged particle multiplicity $(P_T > 0.5 \text{ GeV/c}, |\eta| < 1)$ versus PT(chgjet#1). The open circles (open squares) correspond to the Min-Bias (JET20) data presented in our paper. The solid black dots and solid black squares are data with a 60 cm vertex cut.

Plot 2: Same as Plot 1 but for the average "transverse" multiplicity ($P_T > 0.5 \text{ GeV/c}$, $|\eta| < 1$).

CDF Preliminary Page 1 of 2

Field-Haas-Stuart May 1, 2001

Vertex Cut

Plot 3: Average charged particle multiplicity ($P_T > 0.5 \text{ GeV/c}$, $|\eta| < 1$) versus PT(chgjet#1). The open circles (open squares) correspond to the Min-Bias (JET20) data presented in our paper. The solid black dots and solid black squares are data with a 10 cm vertex cut.

Plot 2: Same as Plot 3 but for the average "transverse" multiplicity ($P_T > 0.5 \text{ GeV/c}$, $|\eta| < 1$).

Conclusion: Changing the vertex cut from 100 cm to 60 cm has essentially no effect on the data. In fact, changing to a 10 cm cut has very little effect except to reduce the statistics.

CDF Preliminary Page 2 of 2