Vertex Cut

In our paper we selected zero or one vertex in $|z|<100 \mathrm{~cm}$ with $\left|z-z_{v}\right|<2 \mathrm{~cm},\left|C T C d_{0}\right|<$ $1 \mathrm{~cm}, \mathrm{P}_{\mathrm{T}}>0.5 \mathrm{GeV} / \mathrm{c}$, and $|\eta|<1$. Here we study the effect of requiring $|\mathrm{z}|<60 \mathrm{~cm}$ instead of 100 cm . In addition, we look at an $|\mathrm{z}|<10 \mathrm{~cm}$ cut to see if the size of the interaction region ($\sigma_{\mathrm{z}}=30 \mathrm{~cm}$) has a big effect on the data.

Plot 1: Average charged particle multiplicity ($\mathrm{P}_{\mathrm{T}}>0.5 \mathrm{GeV} / \mathrm{c},|\eta|<1$) versus PT (chgjet\#1). The open circles (open squares) correspond to the Min-Bias (JET20) data presented in our paper. The solid black dots and solid black squares are data with a 60 cm vertex cut.

Plot 2: Same as Plot 1 but for the average "transverse" multiplicity ($\mathrm{P}_{\mathrm{T}}>0.5 \mathrm{GeV} / \mathrm{c},|\eta|<1$).

Vertex Cut

Plot 3: Average charged particle multiplicity $\left(\mathrm{P}_{\mathrm{T}}>0.5 \mathrm{GeV} / \mathrm{c},|\eta|<1\right)$ versus PT (chgjet\#1). The open circles (open squares) correspond to the Min-Bias (JET20) data presented in our paper. The solid black dots and solid black squares are data with a 10 cm vertex cut.

Plot 2: Same as Plot 3 but for the average "transverse" multiplicity ($\mathrm{P}_{\mathrm{T}}>0.5 \mathrm{GeV} / \mathrm{c},|\eta|<1$).

Conclusion: Changing the vertex cut from 100 cm to 60 cm has essentially no effect on the data. In fact, changing to a 10 cm cut has very little effect except to reduce the statistics.

