Laboratory #9 A Simple Lens

In this laboratory we find the relationship between an object and an image in a simple lens.

Measure a convenient distance across the filament of the small lamp to determine the size, h_o , of the object. We will be checking if this measurement is correct using the size of the image. Place the lamp at one end of the meter stick so that the filament is at the 0 cm mark — this makes measuring distances a little easier.

Put the lens and screen in the little holders on the meter stick as shown in the diagram on the board. Before taking any data, play around with the lamp, lens and screen and practice focusing the image on the screen. This develops intuition about the relationships between the distances involved.

The basic lens equations are:

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \,,$$

and

$$\frac{h_i}{h_o} = \frac{d_i}{d_o} \,,$$

Here d_o is the distance from the object (lamp) and the lens; d_i is the distance between the lens and the image (screen). We need to take a lot of data. So make a big table in your lab book headed with d_o , d_i , h_i , f_{est} , h_{est} , where the estimated values are those calculated for each value of d_o , d_i and h_i .

Start with the lens 15 cm away from the object, so $d_o = 15$ cm. Move the screen around until the image is well focused. Now, measure d_i and h_i , and put all of the data in your table (remember to include units).

Repeat the measurements with $d_o = 20, 25, 30, 35, 40$ and 45 cm, and put the data in the table.

From the basic equations above, it is easy to see that

$$f = \frac{d_o d_i}{d_o + d_i}$$

and

$$h_o = h_i \frac{d_o}{d_i} \,.$$

Use these formulae to estimate f and h_o for each of your measurements. If the basic equations are correct, then all your estimates should agree pretty well. Do your data support the basic lens equations?

Now use the lens to focus an image on a distant wall, and measure d_o . In this case, d_i and h_i are huge and you don't need to measure them, but enter ∞ for d_i in the table. Estimate f from your data. Does d_o match your expectations when d_i is huge?

Move the lens and screen far away from your lamp. Focus a small image on the screen, and measure d_i . Enter ∞ for d_o in the table and estimate f. Does d_i match your expectations when d_o is huge?