Announcements

Homework 2 due **TODAY**!

Homework 3 due on Feb 8 (next Wednesday).

Last time

- Photoelectric experiment
- What is an photon
- Kinetic energy of a photon Kmax=hf-Φ
- Stopping potential Kmax =eVs

Today

• Black body radiation

in-class quiz (3 min)

A light source shining on a metal surface causes photoelectrons to be emitted. If the source's intensity is made 4x brighter, which statement is closest to being true?

a. Kmax unchanged, # emitted electrons is 2x

b. Kmax unchanged, # emitted electrons unchanged

c. Kmax is 4x, # emitted electrons unchanged

d. Kmax unchanged , # emitted electrons is 4x

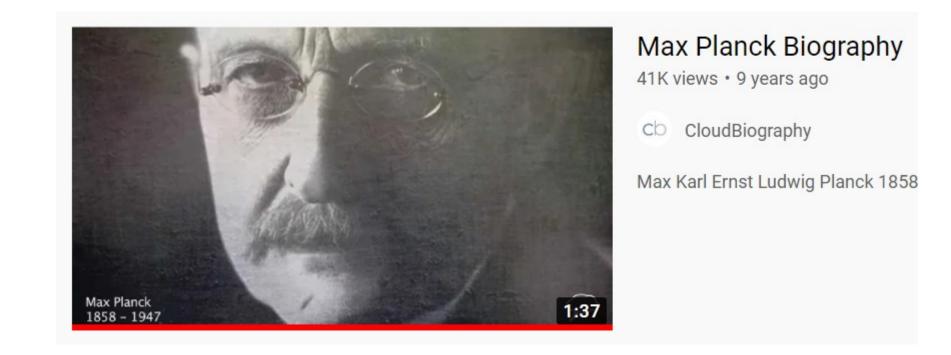
e. Kmax is 2x, # emitted electrons unchanged

in-class quiz (3 min)

A light source shining on a metal surface causes photoelectrons to be emitted. If the source's intensity is made 4x brighter, which statement is closest to being true?

a. Kmax unchanged, # emitted electrons is 2x

b. Kmax unchanged, # emitted electrons unchanged


c. Kmax is 4x, # emitted electrons unchanged

d. Kmax unchanged , # emitted electrons is 4x

e. Kmax is 2x, # emitted electrons unchanged

$$K_{max} = hf - \emptyset$$

What is Planck's revolutionary discovery?

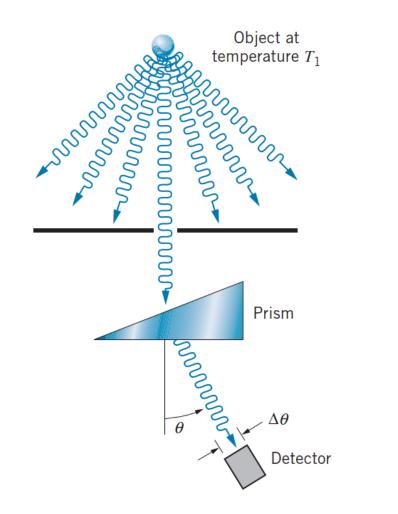
https://www.youtube.com/watch?v=R9sMxEnbha0

Origin of Plank's Constant | Birth of Quantum Mechanics | PHYSICA

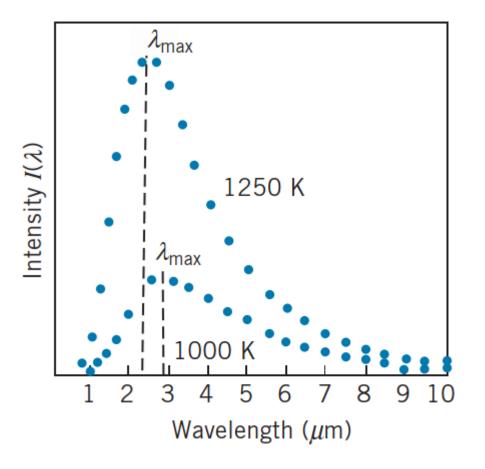
233K views • 1 year ago

PHYSICA

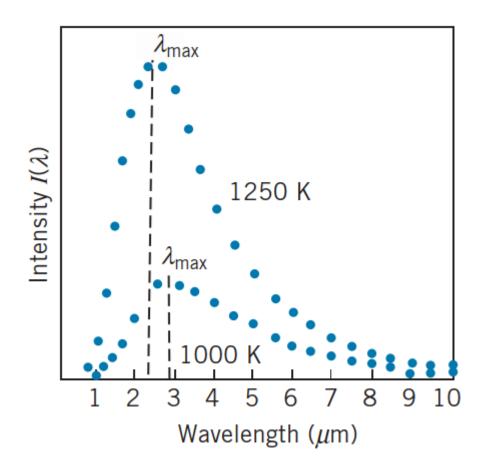
Physica #Planks #constant #Origin #PHYSICA An Initiative by a group of IIT Roorkee Scholars. Providing Free


https://www.youtube.com/watch?v=2dgau46ZCqs

Heated objects emit light


Which one is the hottest?

Spectrum of thermal radiation $I(\lambda)$

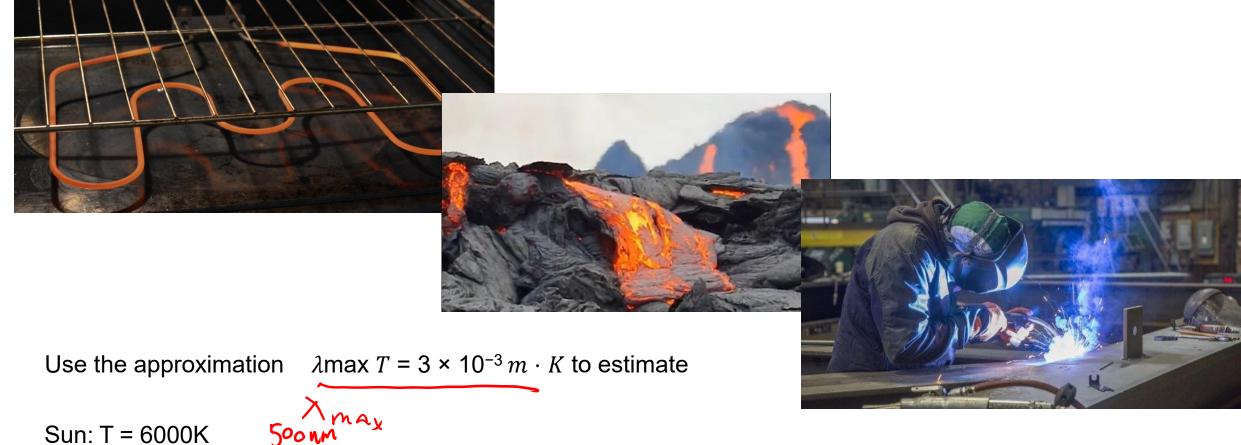


Intensity: energy per unit time per unit area

Two interesting observations here. Can you find them?

Spectrum of thermal radiation $I(\lambda)$

Stefan-Boltzmann Law


Total intensity I= σT^4

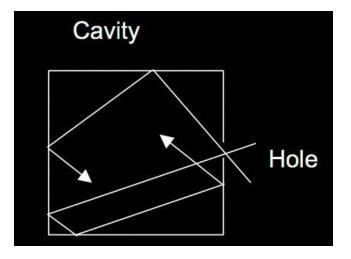
 $\sigma = 5.67 \times 10^{-8} W m^{-2} K^{-4}$ Stefan-Boltzmann constant

Wien's Displacement Law:

 $\lambda \max T = 2.898 \times 10^{-3} \, m \cdot K$

Spectrum of thermal radiation $I(\lambda)$

Sun: T = 6000KRoom: T = 300KUniverse: T = 3K Xmax 500 nm 10, 000 nm 1 mm


thermal vision

Black body radiation

Black body: An idealized object which absorbs all incident EM radiation and emits non directly. (A simplification so that calculations will be independent of the material property)

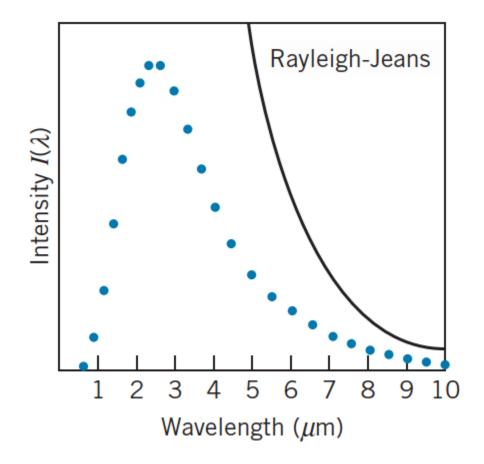
Idealized black body: a small hole to a cavity

- Light bounces around inside and is unlikely to directly get out
- But some thermalized radiation will make it out
- When a black body reaches thermal equilibrium, the intensity of the emitted EM radiation equals the absorbed radiation

Classical crisis for black body radiation

• The classical calculations of the spectral intensity $(dI/d\lambda)$ of the emitted radiation versus EM wavelength, as a function of the temperature yields (details skipped):

Rayleigh-Jeans Law	dI	$2\pi ckT$
	$d\lambda$	λ^4


c = speed of light; Boltzmann constant $k = 1.38 \times 10^{-23} J/K$

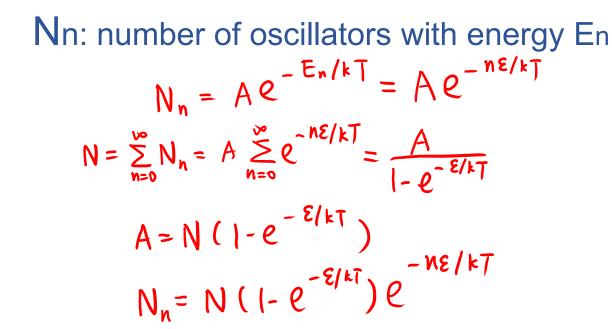
Problem with Rayleigh-Jeans law: total intensity integrated over all wavelengths is infinite!

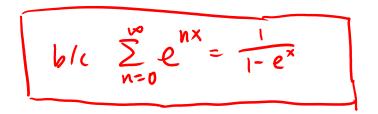
$$I = \int_0^\infty \frac{2\pi ckT}{\lambda^4} d\lambda \propto -\frac{1}{\lambda^3} \Big|_0^\infty \to \infty \text{ as } \lambda \to 0$$

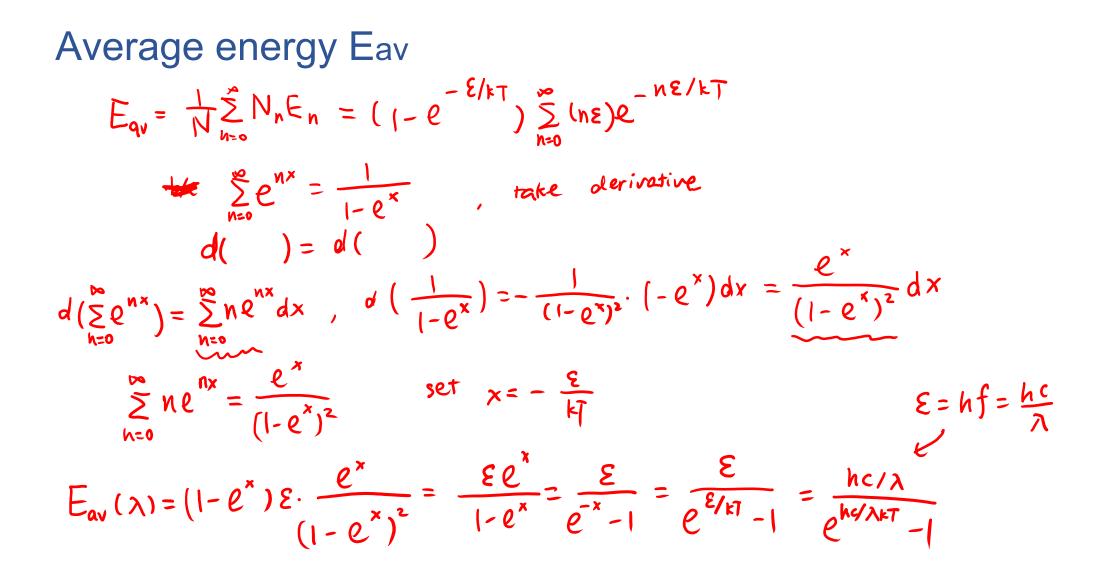
Obviously something wrong...

Ultraviolet catastrophe

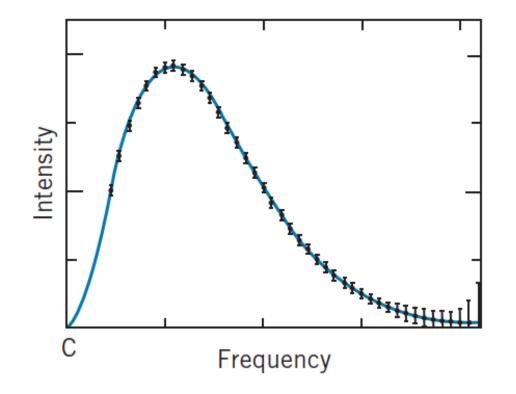
- fits reasonably well for long wavelength light
- but strongly deviates for short wavelengths


Planck radiation formula


Max Planck derived the spectral intensity of black body radiation from <u>a new assumption</u>: each atomic oscillator making up a black body can emit or absorb energy only in **interger multiples** of a **basic quantity of energy**


 $E_n = n \epsilon$ n = 1, 2, 3...

No longer continuous as in classical physics!


energy of each of the quanta is determined by the frequency $\epsilon = h f$ f is the frequency, Planck's constant $h = 6.6 \times 10^{-34} J \cdot s$

$I(\lambda) \text{ prediction}$ $I(\lambda) = \frac{c}{4} \cup (\lambda) = \frac{c}{4} \setminus (\lambda) E_{av}(\lambda) / V$ $U(\lambda) \text{ energy density}$ $N(\lambda) d\lambda = \frac{8\pi V}{\lambda^{4}} d\lambda$ $I(\lambda) = \frac{c}{4} \cdot \frac{8\pi V}{\lambda^{4}} \cdot \frac{hc}{hc} + \frac{1}{V} = \begin{bmatrix} 2\pi h c^{2} & \frac{1}{e^{hc}/\lambda kT} - \frac{1}{V} \end{bmatrix}$

- cosmic microwave background spectrum
- exactly fit (error bars enlarged 400x)
- estimated universe temperature 2.7K

 $I(\lambda) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$

Stefan-Boltzmann Law

Total intensity I= σT^4

 $\sigma = 5.67 \times 10^{-8} W m^{-2} K^{-4}$ Stefan-Boltzmann constant

• Find total power through integration (hint: use variable of $x = h c / \lambda k T$ for the integration)

$$I = \frac{2\pi^5 hc^2}{15} \left(\frac{k_B T}{hc}\right)^4 = 5.67 \times 10^{-8} T^4$$

Stefan-Boltzmann constant!

$$I(\lambda) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$$

Wien's Displacement Law:

 $\lambda \max T = 2.898 \times 10^{-3} \, m \cdot K$

• Find peak wavelength from Planck's formula through setting the derivative to 0 (hint: use variable of $x = h c / \lambda k T$)

 $\lambda_{\max} T = 0.002898 \text{ m} \cdot \text{K}$

Wien's displacement law!

$$I(\lambda) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$$

• At the long wavelength limit, $x = h c / \lambda k T \ll 1$, do a Taylor expansion

$$I_{\lambda} = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda k_B T} - 1} \simeq \frac{2\pi hc^2}{\lambda^5} \frac{1}{hc/\lambda k_B T} = \frac{2\pi ck_B T}{\lambda^4}$$

Recovers Rayleigh-Jeans law!

• Short wavelength: $x = h c / \lambda k T \gg 1$

$$I_{\lambda} = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda k_B T} - 1} \simeq \frac{2\pi hc^2}{\lambda^5} e^{-hc/\lambda k_B T}$$

Falls exponentially to zero Ultraviolet catastrophe solved!