Announcements

- Homework 5 is due next Wednesday, March 1.
- After today, Exam 1 will be returned to you on April 5 (Exam 2 day)

Last time

• Schrödinger Equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U(x)\psi(x) = E\psi(x)$$

- Recipes for solving Schrödinger Equation
 - find a mathematical function
 - boundary condition, normalization condition
- Expectation values, operator

Today's class

• Particle in an infinite well

in-class quiz (3 min)

The probability that a particle is in a given small region of space is proportional to:

(A) Its energy

(B) Its momentum

(C) The frequency of its wave function

(D) The wavelength of its wave function

(E) The absolute square of its wave function

in-class quiz (3 min)

The probability that a particle is in a given small region of space is proportional to:

(A) Its energy

(B) Its momentum

(C) The frequency of its wave function

(D) The wavelength of its wave function

(E) The absolute square of its wave function

Solutions for constant potential energy

$$-\frac{\hbar^{2}}{2m}\frac{d^{2}\psi}{dx^{2}} + U_{o}\psi(x) = E\psi(x) \Rightarrow -\frac{\hbar^{2}}{2m}\frac{d^{2}\psi}{dx^{2}} = (E-U_{o})\psi(x) \Rightarrow \frac{d^{2}\psi}{dx^{2}} = -\frac{2m}{\hbar^{2}}(E-U_{o})\psi(x)$$

$$\frac{d^{2}\psi}{dx^{2}} = -k^{2}\psi(x), \qquad k^{2} = \frac{2m(E-U_{o})}{\hbar^{2}} \text{ or } k = \sqrt{\frac{2m(E-U_{o})}{\hbar^{2}}}$$

Y(x)= Asinkx + Bcoskx

4(x)=(e^{kx}

because
$$\frac{d\psi(x)}{dx} = kA \cos kx - kB \sin kx$$

 $\frac{d^2\psi(x)}{dx^2} = -k^2A \sin kx - k^2B \cos kx = -k^2\psi(x)$

Solutions for constant potential energy

When
$$E < U_0$$
 Penetration of a particle into a forbidden region

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U_0\Psi(x) = E\psi(x)$$

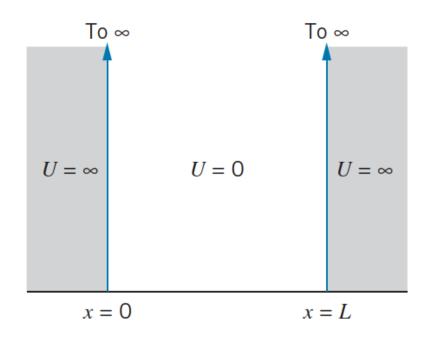
$$U_0\Psi(x) - E\Psi(x) = \frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} \implies \frac{2m(U_0 - E)}{\hbar^2}\Psi(x) = \frac{d^2\psi}{dx^2} \implies |et|_{k} = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}}$$

$$\frac{d^2\psi}{dx^2} = k'^2\Psi(x)$$

$$\frac{d^2\psi}{dx^2} = k'^2\Psi(x)$$
be cause $\frac{d\Psi(x)}{dx} = k'Ae^{k'x} + Be^{-k'x}$

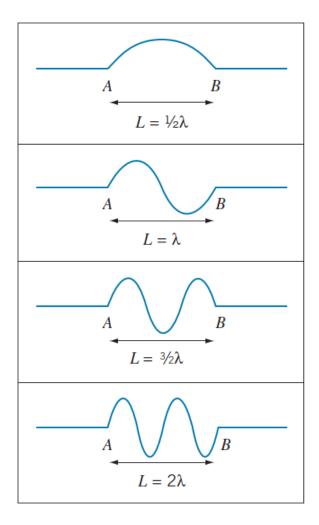
$$\frac{d^2\Psi(x)}{dx^2} = k'^2Ae^{k'x} + k'^2Be^{-k'x} = k'^2\Psi(x)$$

The free particle F=0, $F=-\frac{dU}{dx}=0$, <u>U</u> is constant, set $U_0=0$ $\psi(x) = A \sin kx + B \cos kx$ with $k = \sqrt{\frac{2m(E-V_0)}{t^2}} = \sqrt{\frac{2mE}{t^2}}$ $E=\frac{\hbar^2k^2}{k^2}$ 2.m de Broglie relationship $\lambda = \frac{h}{p} \Rightarrow p = \frac{h}{\lambda}$, $\lambda = \frac{2\pi}{k}$ $E = \frac{p^{2}}{2m} = \frac{(h/\lambda)^{2}}{2m} = \frac{(h \cdot \frac{k}{2\pi})^{2}}{2m} = \frac{(h \cdot \frac{k}{2\pi})^{2}}{2m} = \frac{(h \cdot k)^{2}}{2m} = \frac{h^{2}}{2m}$ any A, any k, any E not quantized completely unlocalized (see textbook)

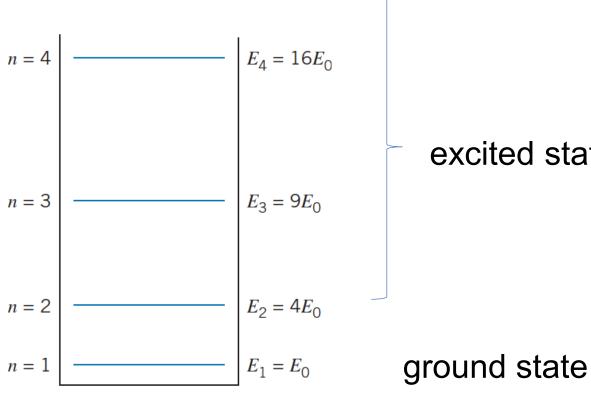


$$U(x) = 0 \qquad 0 \le x \le L$$

= $\infty \qquad x < 0, x > L$
 $-\frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} + U(x)\psi(x) = E\psi(x)$
trick : find separate solus for different region



because
$$k = \sqrt{\frac{2mE}{\hbar^2}}$$
 $k = \frac{n\pi}{L}$ $n=1,2,3,\cdots$
 $E = \frac{\hbar^2 k^2}{2m}$ quantized
 $= \frac{\hbar^2 \pi^2 n^2}{2m L^2} = \frac{\hbar^2 n^2}{8m L^2}$ $n=1,2,5,\cdots$
let $E_0 = E_1 = \frac{\hbar^2}{8m L^2}$
 $E_n = N^2 E_1$
 Λ : quantum number



excited state

Can adsorb or release energy to jump between energy states

In-class exercise (5 min)

Consider an electron confined to a quantum well as infinite potential well. The lowest energy transition produces a photon of 440 nm. What is the approximate width of the well?

$$\Delta E = \frac{hc}{\lambda} = \frac{1240 \text{ eV} \cdot nm}{440 \text{ nm}} = 2.8 \text{ eV}$$

$$\Delta E = E_2 - E_1 = 3E_1 \implies E_1 = 0.93 \text{ eV}$$

$$E_1 = E_0 = \frac{h^2}{8mL^2} \implies L = \int \frac{h^2}{8mE_1} = \frac{hc}{8mC^2E_1} = 0.63 \text{ nm}$$

Apply normalization conditions to determine constant A

$$\begin{aligned} \psi(x) &= A \sin \frac{n\pi}{L} \times \quad 0 \leq x \leq L \\ \int_{-\infty}^{\infty} |\psi(x)|^2 dx = | \quad \Rightarrow \quad \int_{0}^{L} A^2 \sin^2 \frac{n\pi}{L} x dx = | \\ A^2 &= \frac{2}{L} \quad , \quad A = \begin{bmatrix} 2\\ L \end{bmatrix} \\ \psi_n(x) &= \int_{-\infty}^{2} \frac{2}{L} \sin \frac{n\pi x}{L} \quad n = 1, 2, 3, \cdots \end{aligned}$$