Announcements

- Homework 7 is due TODAY.
- Homework 8 is due next Wednesday, March 29.

Last time

Wave function of the hydrogen atom

Today's class

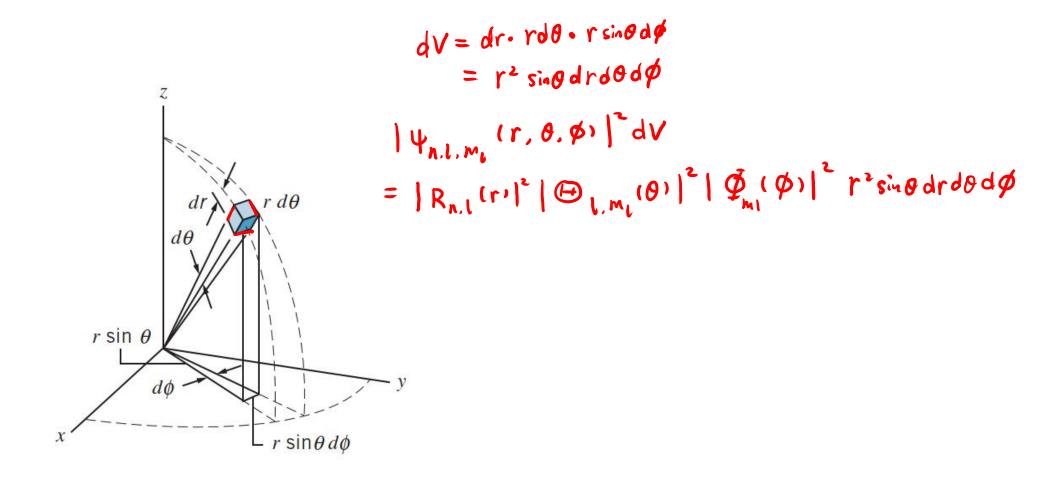
Probability density

in-class quiz (2 min)

Which hydrogen wavefunction is valid for (n,l,m_l)?

- a. (3,2,3)
- b. (3,3,1)
- c. (2,4,-4)
- d. (2,5,4)
- e. (3,1,1)

in-class quiz (2 min)

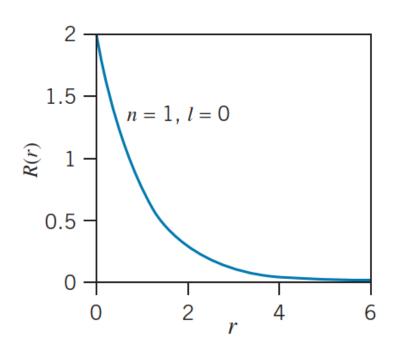

Which hydrogen wavefunction is valid for (n,l,m_l)?

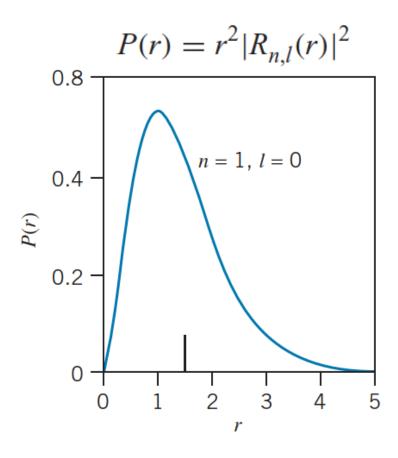
```
a. (3,2,3)
```

c.
$$(2,4,-4)$$

```
n
l = 0, \dots, n-1
m_l = 0, \pm 1, \dots, \pm \ell
```

Volume probability density


Radial probability density


The probability to find the electron in the shell between spheres of radius \underline{r} and \underline{r} to \underline{r} Probability density is probability per unit length dr P(r) $P(r)dr = |R_{n,l}(r)|^2 r^2 dr \int_0^T |\Theta_{l,m_l}(\theta)|^2 \sin\theta d\theta \int_0^{2\pi} |\overline{\Phi}_{m_l}(\phi)|^2 d\phi$

$$= |R_{n,1}(r)|^2 r^2 dr$$

$$P(r) = r^2 |R_{n,1}(r)|^2$$

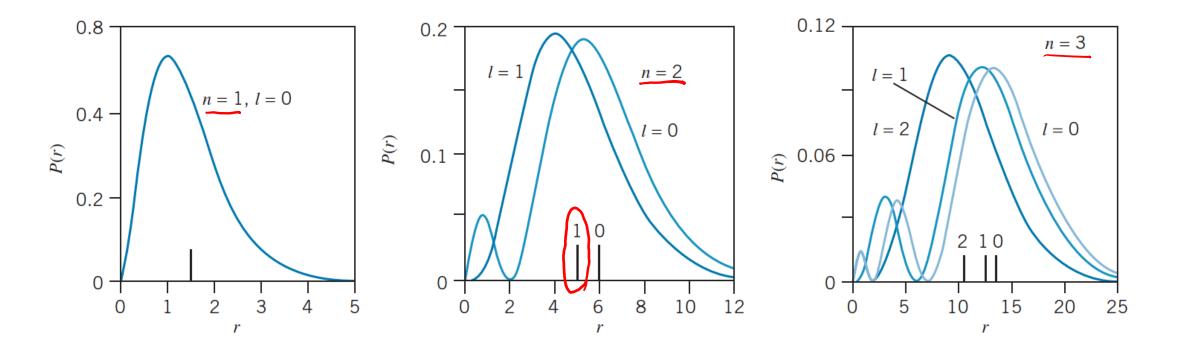
Compare P(r) and R(r)

in-class exercise (10 min)

For state n=2, l=1.

n	l	m_l	R(r)	$\Theta(\theta)$	Φ(¢)
2	1	0	$\frac{1}{\sqrt{3}(2a_0)^{3/2}} \frac{r}{a_0} e^{-r/2a_0}$	$\sqrt{\frac{3}{2}}$ co	$\frac{1}{\sqrt{2}}$	= τ

- a. What is the most probable radius?
- b. What is the expectation value (i.e. average value) of the radius? Hints: https://www.integral-calculator.com/


c. Compare your answers in part a and part b.

Compare your answers in part a and part b.

a.
$$P(r) = r^2 |R(r)|^2 = r^2 \cdot \frac{1}{3 \cdot 8a_0^3 a_0^2} r^2 e^{-r/a_0} = \frac{r^4 e^{-r/a_0}}{24 a_0^5}$$

$$\frac{dP(r)}{dr} = \frac{1}{24a_0^5} \left[4r^3 e^{-r/a_0} + r^4 e^{-r/a_0} (-\frac{1}{a_0}) \right] = \frac{1}{24a_0^5} \cdot r^3 e^{-r/a_0} (4 - \frac{r}{a_0}) = 0$$
 $r = 0$, $r = \infty$ $r = 4a_0$

b.
$$r_{av} = \int_{0}^{\infty} r \, P(r) dr = \int_{0}^{\infty} r^{3} \, |R(r)|^{2} dr = \frac{1}{24a_{o}^{5}} \int_{0}^{\infty} r^{5} e^{-r/a_{o}} dr = \frac{1}{24a_{o}^{5}} |20a_{o}|^{2} = \frac{5a_{o}}{24a_{o}^{5}}$$

- 1. The x scale is different. Average radius is marked. Which affects the average radius more, n or I?
- 2. Recall which quantum number affects the energy?

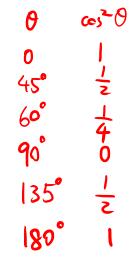
Angular probability density

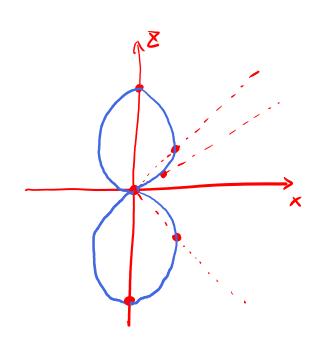
$$P(\theta,\phi) = |\Theta_{l,m_l}(\theta)\Phi_{m_l}(\phi)|^2$$

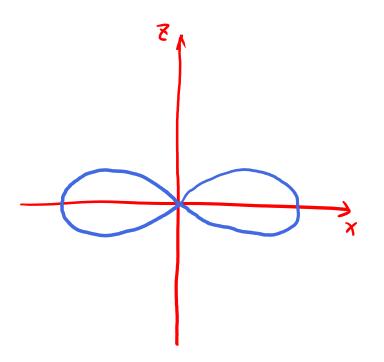
cylindrically symmetric—there is no dependence on the azimuthal angle Φ.

n	l	m_l	R(r)	$\Theta(\theta)$	$\Phi(\phi)$
2	1	0	$\frac{1}{\sqrt{3}(2a_0)^{3/2}} \frac{r}{a_0} e^{-r/2a_0}$	$\sqrt{\frac{3}{2}}\cos\theta$	$\frac{1}{\sqrt{2\pi}}$
2	1	±1	$\frac{1}{\sqrt{3}(2a_0)^{3/2}} \frac{r}{a_0} e^{-r/2a_0}$	$\mp \frac{\sqrt{3}}{2} \sin \theta$	$\frac{1}{\sqrt{2\pi}}e^{\pm i\phi}$

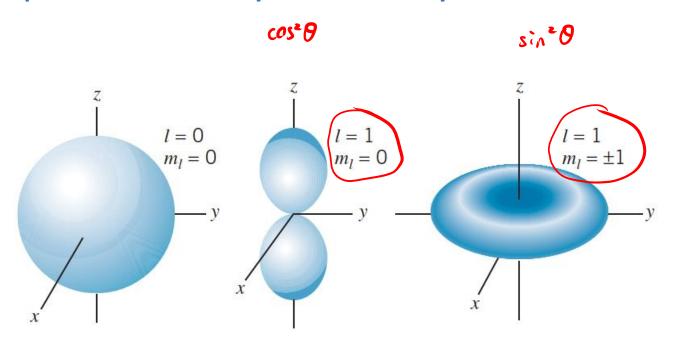
Find the direction in space at which the maximum probability occurs when $m_I = 0$ and when $m_I = \pm 1$.


$$|e^{ti\phi}|^2 = 1$$


when
$$m_1 = 0$$
 and when $m_1 = \pm 1$.


 $m_1 = 0$ $P(\theta, \Phi) = |\Theta(\theta)|\Phi(\Phi)|^2 = \frac{3}{4\pi}\cos^2\theta$
 $\frac{dP}{d\theta} = \frac{3}{4\pi}(-2\cos\theta\sin\theta) = 0$ $\cos\theta = 0$ $\theta = \frac{\pi}{2}$
 $\frac{d^2P}{d\theta^2} = \frac{3}{2\pi}(1-2\cos^2\theta)$ $\cos\theta = 0$ $\frac{d^2P}{d\theta^2} = \frac{3}{2\pi}$
 $\sin\theta = 0$ $\cos^2\theta = 1$ $\frac{d^2P}{d\theta^2} = -\frac{3}{2\pi}$, maximum

$$M_{l} = \pm 1 \qquad P(\theta, \phi) = \frac{3}{8\pi} \sin^{2}\theta , \qquad \frac{dP}{d\theta} = \frac{3}{4\pi} \sin\theta \cos\theta = 0$$


$$\cos\theta = 0 , \qquad \frac{d^{2}P}{d\theta^{2}} < 0 , \qquad \max_{l} \min_{l} \min_{l} \theta = \frac{\pi}{2}$$

Angular probability density

