Announcements

- Homework 8 is due next Wednesday, March 29.
- Exam 2 is on April 5 (schedule updated since the beginning of the semester).
- DRC test accommodation should be requested this week, if you haven't done it yet.
- Homework 9 is due April 3, Monday. Grader Mr. Sinha will finish grading HW9 before 3 pm on April 4.

Last time

- Probability densities (radial and angular)

Today's class

- Spin

in-class quiz (5 min)

The angular probability density of state $n=3, l=1, m_{1}=0$ has its maximum value for θ
Hints: $\Theta(\theta)=\sqrt{\frac{3}{2}} \cos \theta, \Phi(\phi)=\frac{1}{\sqrt{2 \pi}}$
A. 0 or π
B. $\pi / 2$
C. $\pi / 4$ or $3 \pi / 4$
D. Not sufficient to determine.

in-class quiz (5 min)

The angular probability density of state $n=3, l=1, m_{1}=0$ has its maximum value for θ Hints: $\Theta(\theta)=\sqrt{\frac{3}{2}} \cos \theta, \Phi(\phi)=\frac{1}{\sqrt{2 \pi}} \quad P(\theta, \phi)=|\Theta(\theta) \Phi(\phi)|^{2}=\frac{3}{4 \pi} \cos ^{2} \theta$
A. 0 or π

$$
\begin{aligned}
& \frac{d p}{d \theta}=\frac{3}{4 \pi}(-2 \cos \theta \sin \theta)=0 \\
& \cos \theta=0, \quad \theta=\frac{\pi}{2} \\
& \sin \theta=0, \quad \theta=0 \text { or } \pi
\end{aligned}
$$

$$
\frac{d^{2} p}{d \theta^{2}}=\frac{3}{2 \pi}\left(1-2 \cos ^{2} \theta\right)
$$

$$
\sin \theta=0, \quad \cos ^{2} \theta=1, \quad \frac{d^{2} p}{d \theta^{2}}=-\frac{3}{2 \pi}<0 .
$$

$$
{\underset{d r}{P(r)}=r^{2}|R(r)|^{2}}_{d r}
$$

Orbital magnetic dipole moment

$$
\begin{aligned}
& T=\frac{2 \pi r}{v}=\frac{2 \pi r m}{p} \\
& \mu=i A=\frac{q}{T} A=\frac{q p}{2 \pi r m} \cdot \pi r^{2}=\frac{q p r}{2 m}=\frac{q L}{2 m} \quad(L=r p) \\
& \vec{\mu}=-\frac{e}{2 m} \vec{L} \\
& \mu_{L_{z}}=-\frac{e}{2 m} L_{z}=-\frac{e}{2 m} m_{l} \hbar=-\frac{e \hbar}{2 m} m_{l}=-\mu_{B} m_{l}
\end{aligned}
$$

$\mu_{B} \equiv \frac{e \hbar}{2 m}$ Bohr magneton

$$
=9.274 \times 10^{-24} \mathrm{~J} / \mathrm{c}_{\text {Tesla }}
$$

Dipole in a non-uniform field

$F_{\text {net }}=0$

$F_{\text {het }} \downarrow$

$F_{\text {net }} \uparrow$

Dipole in a non-uniform field

The Stern-Gerlach Experiment

Predictions:

1. $2 /+1$ positions - number of different m_{l} values.

$$
\begin{gathered}
(2 l+1) \text { pasitions } \rightarrow \text { all possible } m_{l} \text { values. } \\
m_{l}=0, \pm 1, \cdots, \pm l
\end{gathered}
$$

2. no deflection for $I=0$ (i.e. $m_{l}=0$).

$$
l=0, m_{l}=0
$$

The Stern-Gerlach Experiment

Field off

Field on

Observations:

1. the first conclusive evidence of spatial quantization

- atomic magnetic moments can take only certain discrete orientations in space

2. Silver, $l=0$, not ONE position as (2/+1), but split into TWO.

- Introduce "spin" - intrinsic angular momentum $(2 s+1)$ and set $s=1 / 2$.

Photo from the Nobel Foundation archive.

Otto Stern

The Nobel Prize in Physics 1943
Born: 17 February 1888, Sorau, Germany (now Zory, Poland)
Died: 17 August 1969, Berkeley, CA, USA
Affiliation at the time of the award: Carnegie Institute of Technology, Pittsburgh, PA, USA

Prize motivation: "for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton"
https://www.youtube.com/watch?v=LGQdoK7OSWk

\#breakthroughjuniorchallenge
Quantum Spin and the Stern-Gerlach Experiment
3,364 views • Jun 16, 2019

Ryan Steinbach
43 subscribers

Spin: Intrinsic Angular Momentum

- Spin = intrinsic angular momentum of a particle. It is not a spinning ball of charge. it's an internal QM property with no classical analog.
like l and m_{l}, the spin state of a particle is described by s and m_{s}

$$
\begin{gathered}
|\vec{L}|=\sqrt{l(l+1)} \hbar, \quad L_{z}=m_{l} \hbar, \quad m_{l}=-l,-l+1, \cdots, 0, \cdots, l-1, l \\
|\vec{S}|=\sqrt{s(s+1)} \hbar, \quad S_{s}=m_{s} \hbar, \quad m_{s}=-s,-s+1, \cdots, s-1, s \\
\text { total of } 2 s+1 \text { states }
\end{gathered}
$$

difference: l, m_{l} only integer numbers
s, m_{s} integer or half-integer
e^{-}: spin $s=\frac{1}{2}$, because in the $s-G$ experiments, we only observed two states

Two Spin States for s=1/2

$$
\begin{aligned}
& |\vec{S}|=\sqrt{s(s+1)} \quad \hbar=\sqrt{\frac{1}{2} \cdot \frac{3}{2}} \hbar=\sqrt{\frac{3}{4}} \hbar \\
& S_{s}=m_{s} \hbar=-\frac{1}{2} \hbar \text { or } \frac{1}{2} \hbar \\
& m_{s}=-\frac{1}{2}, \frac{1}{2}
\end{aligned}
$$

Spin examples

- Examples
- Electrons, positrons, protons, neutrons, neutrinos, quarks are spin 1/2
- Photon is spin 1
- π, K mesons are spin $\underline{0}$
- Atoms are half-integral spin if $N_{\mathrm{p}}+N_{\mathrm{n}}+N_{\mathrm{e}}$ is odd
- Hydrogen atom has spin 0 or 1, depending on spin alignment

Four quantum numbers $\left(n, l, m_{p}, m_{s}\right)$ $\pm \frac{1}{2}$

- n : principle quantum number, $n=1,2, \ldots$
- l : orbital angular momentum quantum number: $0 \leq l \leq n-1$
- m_{l} : magnetic quantum number, $\left|m_{l}\right| \leq l$
- m_{s} : spin quantum number

$$
\begin{array}{ccc}
\text { degeneracy } & n^{2} & \left(n, l, m_{l}\right) \\
& 2 n^{2} & \left(n, l, m_{l}, \frac{1}{2}\right) \\
& & \left(n, l, m_{l},-\frac{1}{2}\right)
\end{array}
$$

Spectroscopic notation

Selection rule $\quad \Delta l= \pm 1 \quad$ is most likely.

