Announcements

- Gatoreval is available NOW!
- Homework 10 is due on Wednesday April 19.
- Homework 11 is due next Monday, April 24.
- Pop quiz is on April 26, Wednesday, at class time.

Last time

Semiconductors

Today's class

- Magnetic materials
- Undergrad research opportunities in the Guan lab
- Gatoreval (if time allows)

Magnetization and magnetic dipoles

When a magnetic field is applied, the magnetic moments rotate into partial or full alignment with the applied field, and the vector sum of the dipole moments gives the material a net magnetization.

Total magnetization M

$$\vec{\mathbf{M}} = \frac{\sum_{i=1}^{N} \vec{\mathbf{\mu}}_i}{V}$$

 μ_i : individual atomic magnetic dipole moments

V: volume

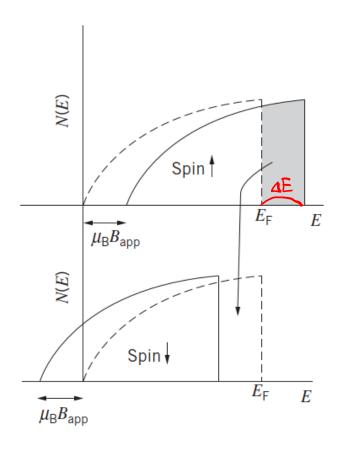
magnetic susceptibility χ

The stronger the applied field, the more the individual magnetic moments rotate into alignment with the field.

In many materials, the net magnetization is directly proportional to the applied field B

$$\mu_0 \vec{\mathbf{M}} = \chi \vec{\mathbf{B}}$$

 μ_0 : magnetic constant, vacuum permeability, permeability of free space $\mu_0 = 4\pi \times 10^{-7} \text{ T-m/A}$. T: Tesla, m: meter, A: ampere


χ is typically small, ~10⁻⁵ to 10⁻¹, and positive -- "paramagnetic" Negative – 'diamagnetic' Undefined in "ferromagnetic" material

Paramagnetism of Electron Gas

The energy of an electron in the field is

$$E= +/- \mu_B B$$

 μ_B : Bohr magneton, 9.27 × 10⁻²⁴ J/T +/- is caused by spin.

The higher-energy electrons with spin up fill the vacant energy states in the spin-down group until the two groups equalize their Fermi energies.

Excess spin-down electrons.

Net magnetization.

Assumptions:

ΔE is small

Low temperature – sharp Fermi-Dirac distribution

Pauli paramagnetic susceptibility:

$$\chi = \frac{3\mu_0 \mu_{\rm B}^2}{2E_{\rm F}} \frac{N}{V}$$

N/V: number of atoms per unit volume.

In-class exercise (5 min)

$$\chi = \frac{3\mu_0 \mu_{\rm B}^2}{2E_{\rm F}} \frac{N}{V}$$

Calculate the susceptibility of Barium in SI unit per unit volume. The density of Ba is 3.50 x 10^3 kg/m³ and the molecular weight of Ba atom is 137.3×10^{-3} kg/mole. The Fermi energy for Ba is 3.65 eV. $\mu_{R} = 4\pi \times (0^{-7} \text{ T·m/A})$, $\mu_{R} = 9.27 \times (0^{-24} \text{ J/T})$

$$\frac{N}{V} \Rightarrow \begin{array}{l} \text{Astrine materials With mass } M = \rho.V \\ \text{mass of individual atom } \frac{M}{N_A} \\ \text{# of aroms } N = \frac{M}{M_A} = \frac{\rho.V}{M}N_A \Rightarrow \frac{N}{V} = \frac{\rho.N_A}{M} \end{array}$$
 For Ba, # of $e^ \frac{2\rho.N_A}{M}$

$$\chi = \frac{3 \mu_0 \mu_B^2}{2 E_F} \cdot \frac{2 \ell N_A}{M} = \frac{3 (4 \pi \cdot 10^{-7} \text{ T·m/A}) (9.27 \times 10^{-24} \text{ J/T})^2}{2 \cdot 3.65 \text{ eV} \cdot 1.6 \times 10^{-19} \text{ J/eV}} \cdot \frac{2 (3.50 \times 10^3 \text{ kg/m}^3) 6.02 \times 10^{23} \text{ params/mole}}{137.3 \times 10^{-3} \text{ kg/m}^3) 6.02 \times 10^{23} \text{ params/mole}}$$

$$= 8.5 \times 10^{-6}$$

$$= 1 \text{ J/T} = 1 \text{ A·m}^2$$

$$\frac{T \cdot m}{A} \cdot \frac{J^2}{T^2} \cdot \frac{kg}{m^3} \cdot \frac{1}{mole}$$

$$= \frac{J}{AT} \cdot \frac{1}{m^2} \longrightarrow \text{ dimensionless}$$

A follow-up question

We found in literature, the experimental measured susceptibility is 20.6×10^{-6} . If the theoretical model is correct, what factors could have caused the discrepancy?

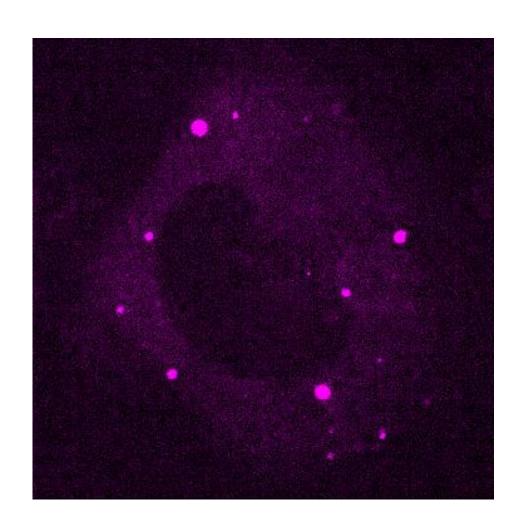
Calculated
$$\chi_{\text{volume}}^{\text{SI}}$$

$$\chi_{\text{volume}}^{\text{cgs}} = \frac{\rho}{M} \chi_{\text{molar}}^{\text{cgs}} \qquad \rho, M \text{ in cgs cunits}$$

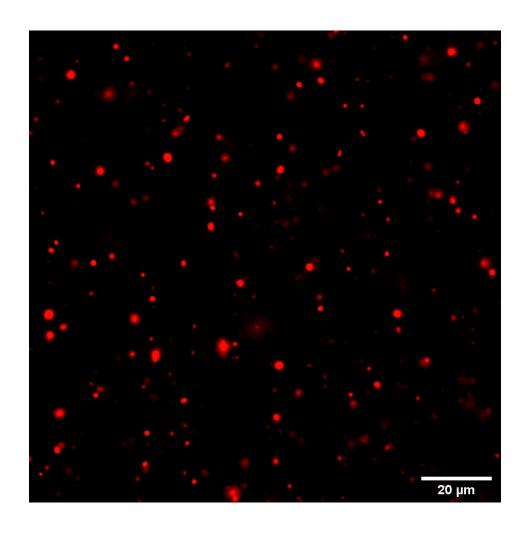
$$\chi_{\text{volume}}^{\text{SI}} = 4\pi \chi_{\text{volume}}^{\text{cgs}} = 4\pi \frac{\rho}{M} \chi_{\text{molar}}^{\text{cqs}}$$

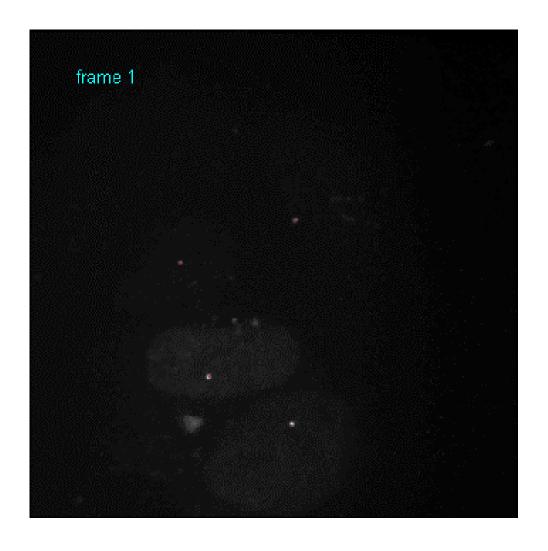
$$= 4\pi \left(\frac{3.509/\text{cm}^3}{137.39/\text{mole}}\right) \cdot 20.6 \times 10^{-6} = 6.6 \times 10^{-6}$$

We provide strong support to undergrads


Excellent track record:

- Sasank Desaraju (Physics), Fulbright semi-finalist.
- Jewel Ashbrook (Physics), Biophysical Society Travel Award.
- Abdul Dozic (Physics), Cornell University Bioengineering Program.
- Reagan McGinley (Microbiology), University Scholar Program.
- Vivian Nguyen (Biology), Bristol Myers Squibb Science Scholar Program.
- Kyle Scheller (Microbiology), University of Florida Biomedical Science Program.


What do we do?



What do we do?

What do we do?

Openings for undergraduate researcher after the summer

Contact Prof. Guan by August 10. Do not email before August.

NO prior biology knowledge required!

One opening, computational – simulation project for RNA vaccine microstructure assembly big data analysis project at whole proteome level for cancer mutation

One opening, experimental – advanced fluorescence imaging

You might be a good fit if ...

Motivation – seriously thinking about grad school or med school.

You can commit at least 15 hours per week, in blocks of time of 3-5 hours during 9-5 weekday

Previous research and programming experience is a plus, but not required.

Contact Prof. Guan by August 10. Do not email before August.