Optical study of antiferromagnetic single crystals $Y_{1-x}Pr_xBa_2Cu_3O_6$ in high magnetic fields

A. Zibold, H. L. Liu, and D. B. Tanner
Department of Physics, University of Florida, Gainesville, Florida 32611

J. Y. Wang
National High Magnetic Field Laboratory, Tallahassee, Florida 32306

M. Grüninger* and H. P. Geserich
Institut für Angewandte Physik, Universität Karlsruhe, D-76128 Karlsruhe, Federal Republic of Germany

T. Kopp
Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, D-76128 Karlsruhe, Federal Republic of Germany

Th. Wolf
Institut für Technische Physik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Federal Republic of Germany

W. Widder and H. F. Braun
Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Federal Republic of Germany

(Received 22 November 1996)

Infrared measurements and linear-spin-wave calculations for single-crystal $Y_{1-x}Pr_xBa_2Cu_3O_6$ ($x=0.0, 0.4, 1.0$) in magnetic fields up to 30 T show that absorption features which have been ascribed to magnon excitations are very insensitive to the applied field. The substitution of Pr^{3+} for Y^{3+} leads to an additional absorption feature, which does have a strong field dependence. This excitation is assigned to an intermultiplet transition in the Pr^{3+} ion. The zero-field temperature dependence of this absorption shows clear evidence of an interaction between Cu and Pr spins. [S0163-1829(97)14117-0]

The cuprate materials order in a quasi-two-dimensional antiferromagnetic phase as mobile charges are removed. Neutron-scattering measurements have observed spin-wave excitations in La$_2$CuO$_4$ (Ref. 1) and YBa$_2$Cu$_3$O$_{6+\delta}$ (Ref. 2), yielding a fairly large in-plane exchange interaction $J \approx 1000$ cm$^{-1}$ and also finding non-negligible intraband exchange constants for YBa$_2$Cu$_3$O$_{5+\delta}$. Raman measurements have observed two-magnon excitations in the 2000–4000 cm$^{-1}$ region. Investigations of single-layer and bilayer materials show that this behavior is a general feature of the insulating phase.

Infrared measurements below the charge-transfer gap of the semiconducting cuprates have shown a variety of weak midinfrared absorption features, some of which are possibly magnetic in origin. In all materials, this midinfrared absorption is close to the energy of the two-magnon Raman scattering peak. The double-layer material YBa$_2$Cu$_3$O$_6$ has in addition a strikingly narrow absorption line at 1436 cm$^{-1}$, which is not seen in single-layer materials. This structure has been attributed to the excitation of a single magnon of the optical branch.

If the Y^{3+} ion is replaced by a rare-earth ion a second spin system appears: the $4f$ electron configuration of the rare earth. Crystal field splitting of ground state and excited levels gives rise to new absorption features; these have been observed in PrBa$_2$Cu$_3$O$_y$ ($y=6$ and 7) and Pr$_2$CuO$_4$ by neutron spectroscopy and Raman scattering, respectively. Pr substitution is particularly interesting because in the fully oxygenated phase the substitution destroys the superconductivity. Recent neutron-scattering measurements have provided evidence for significant magnetic coupling between the Cu and Pr spin systems.

The magnetotransmittance measurements on the insulating Y$_{1-x}$Pr$_x$Ba$_2$Cu$_3$O$_6$ system reported here find a strong field dependence of a peak at 2275 cm$^{-1}$ that arises when Pr is present. This Pr-related feature is seen to interact with the antiferromagnetism of the CuO$_2$ system. In addition, we find a negligible shift with field of the sharp absorption line at 1436 cm$^{-1}$ and of the possible two-magnon midinfrared absorption.

Our crystals were grown using a self-flux method described elsewhere and were annealed either in UHV at 700 K for two days or in flowing argon at 950 K for four days to obtain undoped material. To obtain a good surface quality, the samples were etched for 3 min in 1% Br in ethanol solution prior to the measurement. The optical measurements were performed using a Fourier-transform spectrometer (Bruker IFS 113v) and at zero field only a grating spectrometer (Perkin-Elmer 16U). The frequency range was 700–12 000 cm$^{-1}$ at zero field and 700–4000 cm$^{-1}$ at high magnetic field. For the transmittance measurements in magnetic field, a light pipe was used to carry the infrared light through the bore of a resistive magnet. The field range was $B=0–30$ T. A bolometer detector was mounted at the end of the light pipe; both sample and detector were in a helium Dewar. The field dependence of the detector was calibrated by measuring an empty diaphragm at different magnetic fields. For certain measurements the normal to the (001) surface of the sample was oriented at an angle of 30° to the static field, enabling magnetotransmittance with an in-plane component of the field.

Figure 1 shows the 10 K optical conductivities $\sigma_{1}(\omega)$ for YBa$_2$Cu$_3$O$_6$ (YBCO), Y$_{0.8}$Pr$_{0.4}$Ba$_2$Cu$_3$O$_6$ (YPBCO), and
PrBa$_2$Cu$_3$O$_6$ (PBCO), calculated from the transmittance and reflectance.7 The low-frequency range is dominated by multiphonon absorption, with two-phonon processes contributing up to about 1400 cm$^{-1}$. All three materials have a sharp absorption line at \sim 1436 cm$^{-1}$. With increasing Pr doping its spectral weight decreases by about a factor of 2 and its width increases by about a factor of 3. A second significantly broader and stronger feature occurs at 2795 cm$^{-1}$ (YPBCO), 2640 (YPBCO), and 2560 cm$^{-1}$ (PBCO). In single-layer materials a similar peak is found at higher energies3–7.

It is believed that the origin of these features is the antiferromagnetism of the CuO$_2$ planes. The two-magnon Raman line is close in energy to the 2500–2800 cm$^{-1}$ midinfrared feature, suggesting that the latter has a similar origin. Two-magnon infrared absorption, however, requires an additional symmetry-breaking process. Several such processes have been proposed including disorder,5 sidebands of a direct exciton,1 and which really can be seen only above 8 T. A change can be seen at 2275 cm$^{-1}$ and a weaker one that shifts up to about 1400 cm$^{-1}$, also due to Pr doping, which moves with field by a smaller amount. There appears to be a change in the shape of another weak feature at 2350 cm$^{-1}$, but the frequency where the feature appears does not change with field. In the left panel the transmittance is plotted over the same frequency range for temperatures between 10 and 390 K. Both the 2095 and the 2275 cm$^{-1}$ absorptions are almost constant in frequency, but broaden and weaken with increased temperature.

We fitted the line shape in ln(1/T) using two oscillators to describe the field and temperature dependence of the absorption feature and three broad oscillators to fit the background (not changed with field). Figure 3, upper panel, shows the 5 K result for PBCO with $B||c$ and 30$^\circ$ configuration and for YPBCO with $B||c$. In PBCO the oscillator strength is distributed about 35% into the upper branch and 65% into the lower branch. The feature is weaker in YPBCO and only the red-shifting branch can be discerned.

The shift with field is linear, with different slopes for the lower and upper branch. The slopes in the 30$^\circ$ configuration are both reduced by a factor cos30$^\circ$ = 0.87, indicating that the field component perpendicular to the planes is crucial for its magnetic field and temperature behavior. Due to the crystalline environment the quantum number J_z ceases to be good (J is the total angular momentum) and crystal quantum numbers μ can be used to classify the crystal field energy levels.17 For D_{4h} symmetry we obtain $\mu = 0$, ± 1 with five nondegenerate states and two doubly degenerate states in the ground level and in addition a doubly degenerate state in the first excited level. Here, we consider the optical trans-
transition between the ground state \((g) \) to the first excited state \((e) \) with both levels splitting in magnetic field. The transitions are between \(\omega_e = \gamma_e \mu_B B \) to \(\omega_g = \gamma_g \mu_B B \) with the zero-field transition \(\omega_e - \omega_g \). A fit to our data yields \(\gamma_g = 1.01 \pm 0.05 \) and \(\gamma_e = 3.5 \pm 0.1 \). These splitting factors \(\gamma_i \) are analogous to the Landé factors \(g_i \) (Ref. 19) times the respective value of \(J_z \). They can be understood as linear combinations of \(J_z \) levels \(\pm 1, \pm 3, \) and \(\pm 5 \).

FIG. 2. The transmittance of \(\text{PrBa}_2\text{Cu}_3\text{O}_6 \) over 2000–2400 cm\(^{-1}\). The right panel shows the field dependence up to 30 T. Here the curves have been displaced from one another for clarity and \(T \) is in arbitrary units. The inset displays the result for \(\text{Y}_{0.6}\text{Pr}_{0.4}\text{Ba}_2\text{Cu}_3\text{O}_6 \) at 0 and 30 T. The left panel shows the temperature dependence between 10 and 390 K at zero field for \(\text{PrBa}_2\text{Cu}_3\text{O}_6 \).

The interaction of the \(\text{Pr}^{3+} \) moments with the \(\text{CuO}_2 \) spin system is strongly evident in the temperature \((T) \) dependence of this absorption. Figure 4 shows the normalized oscillator strength of the absorption \(N_{\text{eff}}/N_0 \) as a function of \(T \) obtained from two independent data evaluations, i.e., from the oscillator strength of a Lorentzian fit and from sum-rule calculations for \(\sigma_1(\omega) \). The dashed line shows the expected behavior if depopulation of the lowest crystal-field levels determines the \(T \) dependence. This calculation, which is based on a Boltzmann distribution of the local crystal-field levels given by Hilscher et al.,\(^\text{10}\) cannot satisfactorily describe the \(T \) dependence. Even if we assume that intermediate levels or shifts of these levels would be present, no adequate fit can be obtained. The solid line shows a mean-field ansatz \(N_{\text{eff}} \sim \sqrt{1 - T/T_N} \), with \(T_N \) the Neél temperature of the Cu spins. This assumption describes the situation well, implying an interaction between Cu and Pr spins in the mate-

FIG. 3. Upper panel: Field dependence of the intermultiplet transition in the \(\text{Pr}^{3+} \) ion for \(\text{PrBa}_2\text{Cu}_3\text{O}_6 \) for \(B \parallel c \) and \(30° \) to the normal and for \(\text{Y}_{0.6}\text{Pr}_{0.4}\text{Ba}_2\text{Cu}_3\text{O}_6 \) for \(B \parallel c \). The dashed and solid lines show linear fits. Lower panel: The frequency of the absorption line at 1436 cm\(^{-1}\) is plotted as a function of field for \(B \parallel c \) at \(T = 5 \) K. The solid line (mainly out-of-plane mode) and dashed line (mainly in-plane mode) are theoretical calculations.

FIG. 4. Temperature dependence of \(N_{\text{eff}}/N_0 \) for the intermultiplet transition at \(B = 0 \) T, obtained in two different ways. The dashed line is a fit using the Boltzmann distribution, the solid line a fit taking \(T_N(\text{Cu spins}) \) into account.
plot the fitted frequency for the sharp absorption feature in YBCO and PBCO for applied field \(B \parallel c \) together with the LSW result. The upper (lower) branch contains 70% (30%) out-of-plane character. Similar results are obtained in the 30° configuration. The symbol size shows the experimental error and the uncertainty in the fit. Thus, the experimental results neither really support nor exclude an interpretation as a single optical magnon. Other measurements on YBCO at magnetic fields up to 16.5 T \((B \parallel ab)\) and \((B \parallel c)\) do not find a measurable shift of this absorption line. Recently, two independent neutron-scattering groups reported the observation of the single optical magnon in YBCO at about 550 cm\(^{-1}\). Hence, the question of the origin of this peculiar sharp infrared feature still has to be understood.

In the case of the probable two-magnon midinfrared absorption at 2500–2800 cm\(^{-1}\), there is in first order no field dependence expected, independent of the local interaction between the two magnons. Indeed, we see no effects in our spectra (inset of Fig. 1).

In summary we have measured magnetotransmittance in the semiconducting limit of bilayer cuprates. The negligible field dependences of features that have been associated with magnons in the CuO\(_2\) planes\(^{16}\) are in accord with theoretical expectations for such features, although, of course, a non-magnetic origin cannot be ruled out.

We also observed a strong field dependence in a Pr-related feature that can be understood in terms of an inter-multiplet excitation process. The temperature dependence of this excitation shows evidence for an interaction between Pr and Cu spins, in agreement with recent neutron results.\(^{12}\)

We acknowledge P.J. Hirschfeld and P. Kumar for helpful discussions. The research was supported by NSF Grant No. DMR-9403894. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-9016241 and by the State of Florida. It was supported in part by the Deutsche Forschungsgemeinschaft (M.G. H.P.G. T.K.).
