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Abstract

We have developed an effective medium approximation (EMA) for the effective nonlinear response due to clustering
of a strongly nonlinear conducting material with a current-field (J-E) response of the form J = X|E|2‘a E(B>0)ina
host medium, where y is the nonlinear coefficient. A cluster energy functional is constructed and a variational principle is
invoked to obtain an expression for the effective nonlinear response of a fractal cluster. The EMA results are compared with
numerical calculations in a deterministic fractal model and excellent agreement is found.

1. Introduction

The physics of nonlinear inhomogeneous media
has received much attention in recent years [1,2].
In particular, attention has been paid to a class of
strongly nonlinear conducting composite media with
a power-law nonlinearity which occurs when a suf-
ficiently strong field is applied to condensed matter
[3-5]. For this composite system, the inclusion and
the host medium obey a local current-field (J-E)
relation of the form J = y|E|*?E, and 8 > 0. For
such a nonlinear relation, we have recently obtained
the dilute-limit expressions for the effective response
of a small volume fraction of spherical inclusions em-
bedded in a host medium [3]. In order to extend the
theory to a random composite at larger volume frac-
tions, we develop an effective-medium approximation
(EMA), which generally gives a better comparison
with numerical simulations [4].

However, the approach is only valid for zruly ran-
dom composites in the dilute limit. Many growth and

fabrication processes may indeed produce spatial cor-
relations in realistic composites. In particular, a fractal
clustering will be generated via various aggregation
processes [6-8]. The fractal geometry should have an
observable effect on the nonlinear properties [9,10]
(for a recent review, see Ref. [11]). In this work, we
aim at developing an EMA for the effective nonlinear
response of clustering strongly nonlinear materials in
a host medium, in which case a similar approxima-
tion in weakly nonlinear composites [12] cannot be
applied.

2. Formalism
We consider a class of strongly nonlinear compos-

ite media which obey a current-field response of the
following form [3-5],

J = x|E|*?E, (1)
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where 8 > 0. The nonlinear coefficient y will take
on different values in the inclusion and in the host
medium. An external electric field Eq is applied. In
Ref. [3], we invoke a variational principle by mini-
mizing the energy functional,

1
W(E] = W&V/J(x) CE(x)dY @)

where V is the volume of the composite. When the
minimum condition is satisfied by a trial electric field
E, then by using Egs. (1) and (2), the effective non-
linear response y. can be obtained,

1 .
X5=W=m/,y(x)|E(x)|2+2ﬁdV (3)
0 Y

The trial electric field E will be taken as the solution
of the linear problem [3].

Let us consider a problem in d dimensions, i.e. of
spherical inclusions in three dimensions and cylindri-
cal inclusions in two dimensions (2D) of radius p and
nonlinear coefficient y; suspended in a host medium
of xm. the energy functional is given by [3]

Wg(b) = xm + pxmQ@p(b) + pxi(1 — b)Y, (4)

where b is a variational parameter as yet to be deter-
mined and p is the volume fraction of the inclusion.
The quantity Qg(b) generally depends on 8 and d;
Qp(b) is a polynomial in b for integral values of B,
while for nonintegral values of B, Qg(b) is an infi-
nite series of b [4]. Note that Wg(b) has no direct
relevance to the effective nonlinear response until we
minimize it with respect to b and hence determine y..
Eq. (4) allows us to obtain the dilute-limit expression
for the effective nonlinear response of a small volume
fraction of strongly nonlinear materials embedded in
a host medium [3].

We are now in a position to develop the EMA for the
strongly nonlinear response y. of fractal clusters. We
shall use Eq. (4) to derive an approximate expression
for the effective nonlinear response of a cluster. We
first construct an energy functional Cg(L,b) for a
cluster of radius L. We then minimize Cg(L, b) with
respect to b to find an expression for the effective
nonlinear response y.(L) of fractal clusters. In order
to describe a fractal cluster of type 1 embedded in
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Fig. 1. Normalized effective nonlinear cluster response e/ x| in
EMA (solid lines) and numerical simulations (symbols) plotted
against the volume fraction f for various ratios of conductivity
X2/ x1. From top and downwards in order of decreasing ratio of
conductivity: x2/x1 = 20,10,5,2,0.5,0.2,0.1, and 0.05. Note
the remarkable agreement between EMA and simulations results.

a host medium of type 2, we start with a pure type
1 inclusion of radius p, at which p; = 1 and p; =
0. The volume fraction of host medium is increased
by adding type 2 material. Now increase L by 6L
and the volume fraction by ép,. The size dependence
of volume fraction (p, (L)) will be discussed below.
Then from Eq. (4), we find

8Cp = 8p2[0p(B)Cs + (1 — b)Y xy], (5)

which is an ordinary differential equation for Cg( L, b)
and can be solved to give

X2(1 . b)2+2ﬁ

-Qs(0) _ 1 ,
05b) (f )

(6)

where f =1 — p; is the volume fraction of the clus-
ter; we have explicitly used the initial condition that
Cg(L,b) = y1at L= por f =1, In this way, we ob-
tain a cluster energy functional Cg for a cluster of ra-
dius L. An apparent divergence in Cg at the extremely
dilute limit ( f — 0) will not occur in Y. because in
this limit & — 0, and concomitantly Qg(b) — -1,
hence Y. — xa-

It should be remarked that the approach does not
necessarily assume that the cluster is fractal. If, how-
ever, the cluster is indeed a fractal of fractal dimen-

Cp = X]f—Qﬂ(b) +
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sion dg, then the volume fraction of nonlinear fractal
inclusion is related to the cluster size as

f=(L/p)~ -, (7)

We are ready to obtain numerical results for the EMA
cluster response. We shall present results in 2D to
compare with numerical simulations in a deterministic
fractal cluster [13]. In what follows, we restrict our-
selves to a cubic nonlinearity (3 = 1). The expression
for Q1(b) is given by [4]

Q1(b) = —1 +4b+4b* + 1b*, (8)

valid in 2D. In Fig. 1, we plot the normalized effective
nonlinear response ye/y: as a function of the volume
fraction f of fractal for various ratios y2/ ). As seen
from Fig. 1, we confirm that as the cluster size in-
creases and f decreases from unity towards zero, y.
varies from y; to ys.

3. Numerical calculations in deterministic fractal
clusters

We attempt numerical calculations of the effective
response of a deterministic fractal cluster (DFC)
which is constructed recursively from a simple basic
unit [13], in order to compare with the EMA results.
The cluster has a fractal dimension dr = log3/log2 =
1.585 and the volume fraction f = (%)", where n is
the generation [13]. We construct a fractal network
by mapping the DFC onto a 2D square network (now
f = (%)" for large n) and associating each bond
with two types of nonlinear conductors obeying a
current-voltage (/-V) response of the form

I=xV?, (9

where y; (i = 1,2) is the nonlinear coefficient and
V the voltage across the conductors. The effective re-
sponse of the network is defined as that of a homoge-
neous network of identical conductors, each of which
has a response of the form

1= x.V>. (10)

A unit voltage is applied across the top and bottom
bars of the network. The nonlinear Kirchhoff circuit
equations for each node are solved by the relaxation

method. When convergence is achieved, the current
going into the top bar and that going out of the bot-
tom bar will be the same. The effective nonlinear re-
sponse of the network is used to compare with the
EMA for the same f. The simulation is performed up
to the ninth generation. In Fig. 1, we plot the normal-
ized response ye/y: against f. Except for large vol-
ume fractions, the simulation results are in excellent
agreement with the EMA results. The relatively large
deviation of the numerical data from the EMA is prob-
ably due to the fractal limit being not yet achieved for
small generations (n < 3) of the DFC.

4. Discussions and conclusions

Here a few comments are in order. In this work,
we develop an EMA for fractal clusters through the
construction of a cluster energy functional Cg(L, b).
We may adopt an alternative approach and determine
the cluster response directly from the dilute-limit ex-
pression VVﬁ(E), where b is found from minimizing
Eq. (4). We prefer the present approach as it is com-
putationally much simpler and it gives results at most a
few percent different from those of the alternative con-
sideration. More importantly, it compares better with
numerical simulations. Although the present approach
deals with strongly nonlinear composites, with slight
modifications, the variational method can be applied to
arbitrary nonlinearity as well. However, as it has been
recently shown that even if one considers clustering
of a weakly nonlinear material in a host medium, the
effective nonlinear response can be largely enhanced
[ 14, 15] in the extremely dilute limit (f < 1), the
strongly nonlinear approach will be viable. Moreover,
our results may have relevance to a recent experiment
on laser-irradiated polymers [16], where a power-
law current-voltage characteristic of the form I ~ V?
{which corresponds to 8 = %) has been observed even
in a small applied voltage V.

In conclusion, we have developed an EMA for the
effective nonlinear response of strongly nonlinear frac-
tal clusters. Based on the previously derived dilute-
limit expression, we construct a cluster energy func-
tional and invoke a variational principle to obtain an
approximate expression for the effective nonlinear re-
sponse of a fractal cluster. The EMA results are com-
pared with numerical calculations in a deterministic
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fractal model; excellent agreement is found.
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