# Sector Processor Front FPGA Choice 

Petersburg Nuclear Physics Institute / University of Florida

Rev 1.0
March 14, 2002

## Summary

Current Sector Processor (SP2002) PCB layout assumes [1] that each Front FPGA services 3 input optical links. Below we will compare two options of having 2 and 3 input links per Front FPGA in terms of number of BlockRAMs and user I/Os required, as well as available packaging for Virex-E and Virtex-II families.

## Front FPGA Functionality

The Front FPGA serves as an intermediate buffer between optical links and the main Sector Processor FPGA. It plays a role of the former Sector Receiver. There are several Front FPGAs in the SP2002, the exact number depends more on the available packages, rather than FPGA capacity. Each FPGA services a number of data streams, coming from the optical links. Every bunch crossing each link delivers from the MPC a muon stub formatted as two 16-bit words. Front FPGA:

- Resynchronizes incoming data to the SP2002 global clock;
- Aligns all links to the latest one;
- Demultiplexes data from 16-bit @ 80 MHZ to the 32 -bit @ 40 MHz format;
- Sends it to the external lookup memories for further processing;
- Stores incoming data in the pipeline FIFO, which is deep enough to compensate for L1Accept latency;
- Upon receiving L1A reloads pipeline FIFO output to the L1A DAQ FIFO;
- Reads out and sends the L1A DAQ FIFO output data to the Detector Dependent Unit (DDU) and, optionally, to the L1A Spy FIFO;
- Under VME control generates downloadable test patterns for simulating the MPC data streams and checking the main SP2002 FPGA algorithms;
- Gives the user full control over Finisar FTRJ-8519-1-2.5 and Texas Instruments TLK2501 transceivers;
- Allows error analysis for each link;
- Provides fast monitoring information;
- Provides access for loading external lookup memories.

Front FPGA uses Block RAMs to implement FIFOs. Table 1 summarizes the Block RAM usage by each Front FPGA. This number imposes a first constraint on the FPGA choice. The applicable candidates are XCV50E/XCV100E and bigger from the Virtex-E family (see Table 2) and XC2V250 and bigger from the Virtex-II family (see Table 3).

Table 1 Block RAM count

| Item | Width | Depth | \# of Block <br> RAMs per Link | \# of Block <br> RAMs per 2 <br> Links | \# of Block RAMs <br> per 3 Links |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Alignment FIFO | 16 | 63 | 1 | 2 | 3 |
| Pipeline FIFO | 16 | 512 | 2 | 4 | 6 |
| L1 DAQ FIFO | 16 | 256 | 1 | 2 | 3 |
| Stub Spy FIFO, <br> optional | 16 | 256 | 1 | 2 | 3 |
| Test Pattern FIFO | 16 | 256 | 1 | 2 | 3 |
| Total |  |  | $\mathbf{6}$ | $\mathbf{1 2}$ | $\mathbf{1 8}$ |

Table 2 Virtex-E Devices Summary - 1.8V

|  | System <br> Gates | Row x Col | Slices | Distrib <br> RAM <br> Kbits |  | SRAM <br> 4-Kbit <br> Blocks | DLLs | Max <br> I/O <br> Pads |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| XCV50E | 70 K | $16 \times 24$ | 1,536 | 24 | $\mathbf{1 6}$ | 8 | $\mathbf{1 7 6}$ |  |
| XCV100E | 120 K | $20 \times 30$ | 2,400 | 38 |  | $\mathbf{2 0}$ | 8 | $\mathbf{1 9 6}$ |
| XCV200E | 300 K | $28 \times 42$ | 4,704 | 74 | $\mathbf{2 8}$ | 8 | $\mathbf{2 8 4}$ |  |
| XCV300E | 400 K | $32 \times 48$ | 6,144 | 96 | $\mathbf{3 2}$ | 8 | $\mathbf{3 1 6}$ |  |
| XCV400E | 500 K | $40 \times 60$ | 9,600 | 150 | 8 | 8 | $\mathbf{4 0 4}$ |  |
| XCV600E | 1 M | $48 \times 72$ | 13,824 | 216 | $\mathbf{7 2}$ | 8 | $\mathbf{5 1 2}$ |  |
| XCV1000E | 1.5 M | $64 \times 96$ | 24,576 | 384 | $\mathbf{9 6}$ | 8 | $\mathbf{6 6 0}$ |  |
| XCV1600E | 2 M | $72 \times 108$ | 31,104 | 486 | $\mathbf{1 4 4}$ | 8 | $\mathbf{7 2 4}$ |  |
| XCV2000E | 2.5 M | $80 \times 120$ | 38,400 | 600 | $\mathbf{1 6 0}$ | 8 | $\mathbf{8 0 4}$ |  |
| XCV2600E | 3 M | $92 \times 138$ | 50,784 | 794 |  | $\mathbf{1 8 3}$ | 8 | $\mathbf{8 0 4}$ |
| XCV3200E | 4 M | $104 \times 156$ | 64,896 | 1014 |  | $\mathbf{2 0 8}$ | 8 | $\mathbf{8 0 4}$ |

Table 3 Virtex-II Devices Summary - 1.5V

|  | System <br> Gates | Row x Col | Slices | Distrib <br> RAM <br> Kbits | Multiplier <br> Blocks | SRAM <br> 18-Kbit <br> Blocks | DCMs | Max <br> I/O <br> Pads |
| ---: | ---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| XC2V40 | 40 K | $8 \times 8$ | 256 | 8 | 4 | $\mathbf{4}$ | 4 | $\mathbf{8 8}$ |
| XC2V80 | 80 K | $16 \times 8$ | 512 | 16 | 8 | $\mathbf{8}$ | 4 | $\mathbf{1 2 0}$ |
| XC2V250 | 250 K | $24 \times 16$ | 1,536 | 48 | 24 | $\mathbf{2 4}$ | 8 | $\mathbf{2 0 0}$ |
| XC2V500 | 500 K | $32 \times 24$ | 3,072 | 96 | 32 | $\mathbf{3 2}$ | 8 | $\mathbf{2 6 4}$ |
| XC2V1000 | 1 M | $40 \times 32$ | 5,120 | 160 | 40 | $\mathbf{4 0}$ | 8 | $\mathbf{4 3 2}$ |
| XC2V1500 | 1.5 M | $48 \times 40$ | 7,680 | 240 | 48 | $\mathbf{4 8}$ | 8 | $\mathbf{5 2 8}$ |
| XC2V2000 | 2 M | $56 \times 48$ | 10,752 | 336 | 56 | $\mathbf{5 6}$ | 8 | $\mathbf{6 2 4}$ |
| XC2V3000 | 3 M | $64 \times 56$ | 14,336 | 448 | 96 | $\mathbf{9 6}$ | 12 | $\mathbf{7 2 0}$ |
| XC2V4000 | 4 M | $80 \times 72$ | 23,040 | 720 | 120 | $\mathbf{1 2 0}$ | 12 | $\mathbf{9 1 2}$ |
| XC2V6000 | 6 M | $96 \times 88$ | 33,792 | 1,056 | 144 | $\mathbf{1 4 4}$ | 12 | $\mathbf{1 , 1 0 4}$ |
| XC2V8000 | 8 M | $112 \times 104$ | 46,592 | 1,456 | 168 | $\mathbf{1 6 8}$ | 12 | $\mathbf{1 , 1 0 8}$ |

Another constrain emerges from the number of I/O pins required to route all necessary FPGA ins and outs. Figure 1 shows a muon processing logic of the receiver part of the module. All data paths are marked in blue, addresses in green, controls in red and statuses in pink. Dashed area applies to A-layer muons only. Table 4 brings up details, when each Front FPGA services 3 links ( 3 muons), or 2 links ( 2 muons) per Front FPGA.

Signals in the tables are grouped per function, group names highlighted in bold. For example, first group is composed of the VME interface signals and includes the VME
data, VME Address, and VME control (Chip Select and Write Enable) signals. Only one control signal and one status-monitoring signal are required for the Finisar Optical Transmitter. More signals are needed to control and monitor the TI TLK2501 behavior. In fact, only transmit and receive data paths for one muon consume as many as 32 I/O pins. Note that Finisar and TI use different supply voltages that assume using of different output FPGA banks when connecting to these devices.


Figure 1 Sector Receiver, Muon processing logic

Table 4 Front FPGA I/O Count

| Signal Name | Power <br> or <br> Dir | Bits | Grps | Sum | Grps | Sum |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  |  |  |  |  |  |  |  |
| VME Interface |  |  |  |  |  |  |  |


| Signal Name | $\begin{gathered} \text { Power } \\ \text { or } \\ \text { Dir } \end{gathered}$ | Bits | 2 Links |  | 3 Links |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Grps | Sum | Grps | Sum |  |
| FINISAR | 3.3 V |  |  |  |  |  |  |
| FI_SD | I | 1 | 2 | 2 | 3 | 3 | Signal Detect |
| FI_TD | O | 1 | 2 | 2 | 3 | 3 | Transmitter Disable |
| Subtotal |  | 2 |  | 4 |  | 6 |  |
| TI TLK2501 | 2.5 V |  |  |  |  |  |  |
| TI_GTX_CLK80 | O | 1 | 1 | 1 | 1 | 1 | Reference Clock |
| TI_ENABLE | O | 1 | 2 | 2 | 3 | 3 | Normal /Power Down Mode |
| TI_LOOPEN | O | 1 | 2 | 2 | 3 | 3 | Loop Enable |
| TI_PRBSEN | O | 1 | 2 | 2 | 3 | 3 | Pseudorandom Bit Stream |
| TI_TX_EN | O | 1 | 2 | 2 | 3 | 3 | Transmit Enable |
| TI_TX_ER | O | 1 | 2 | 2 | 3 | 3 | Transmit Error Coding |
| TI_TXD | O | 16 | 2 | 32 | 3 | 48 | Transmit Data |
| $\begin{aligned} & \text { TI_RX_DV_ } \\ & \text { /LOS } \\ & \hline \end{aligned}$ | I | 1 | 2 | 2 | 3 | 3 | Receive Data Valid /Loss of Synch |
| $\begin{aligned} & \text { TI_RX_ER_- } \\ & \text { /PRBS_PASS } \end{aligned}$ | I | 1 | 2 | 2 | 3 | 3 | Receive Error /PRBS Test Pass |
| TI_RX_CLK80 | I | 1 | 2 | 2 | 3 | 3 | Receive Clock |
| TI_RXD | I | 16 | 2 | 32 | 3 | 48 | Receive Data |
| Subtotal |  | 41 |  | 81 |  | 121 |  |
| $\begin{aligned} & \text { Local Phi LUT } \\ & \text { 256K x } 18 \\ & \text { GS841Z18A } \end{aligned}$ | $\begin{gathered} 2.5 \mathrm{~V} \\ \text { or } \\ 3.3 \mathrm{~V} \end{gathered}$ |  |  |  |  |  |  |
| LP_A | O | 18 | 2 | 36 | 3 | 54 | LUT Address |
| /LP_CE | O | 1 | 2 | 2 | 3 | 3 | Chip Enable (AL) |
| /LP_OE | O | 1 | 2 | 2 | 3 | 3 | Output Enable (AL) |
| /LP_WE | O | 1 | 2 | 2 | 3 | 3 | Write Enable (AL) |
| LP_CLK40 | O | 1 | 1 | 1 | 1 | 1 | Clock40, Phase 0 |
| Subtotal |  | 22 |  | 43 |  | 64 |  |
| $\begin{aligned} & \text { Global Phi LUT } \\ & 512 K \times 36 \\ & \text { GS8161Z36A } \end{aligned}$ | $\begin{gathered} 2.5 \mathrm{~V} \\ \text { or } \\ 3.3 \mathrm{~V} \\ \hline \end{gathered}$ |  |  |  |  |  |  |
| /GP_CE | O | 1 | 2 | 2 | 3 | 3 | Chip Enable (AL) |
| /GP_OE | O | 1 | 2 | 2 | 3 | 3 | Output Enable (AL) |
| /GPH_WE | O | 1 | 2 | 2 | 3 | 3 | High Bytes Write Enable (AL) |
| /GPL_WE | O | 1 | 2 | 2 | 3 | 3 | Low Bytes Write Enable (AL) |
| GP_CLK40 | O | 1 | 1 | 1 | 1 | 1 | Clock40, Phase 180 |
| Subtotal |  | 5 |  | 9 |  | 13 |  |
| $\begin{aligned} & \text { Global Eta LUT } \\ & 512 K \times 18 \\ & \text { GS881Z18A } \end{aligned}$ | $\begin{aligned} & 1.8 \mathrm{~V} \\ & \text { or } \\ & 2.5 \mathrm{~V} \end{aligned}$ |  |  |  |  |  |  |
| GE_A | O | 11 | 2 | 22 | 3 | 33 | LUT Address |
| /GE_CE | O | 1 | 2 | 2 | 3 | 3 | Chip Enable (AL) |


| Signal Name | Power <br> or <br> Dir | Bits | Grps | Sum | Grps | Sum |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  |  | O | 1 | 2 | 2 | 3 | 3 |


| Signal Name | Power or Dir | Bits | 2 Links |  | 3 Links |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Grps | Sum | Grps | Sum |  |
| FM_SPARE | O | 1 | 1 | 1 | 1 | 1 | Reserved |
| Subtotal |  | 2 |  | 2 |  | 2 |  |
| Configuration |  |  |  |  |  |  |  |
| CFG_DIN | I | 1 | 1 | 1 | 1 | 1 | Serial Input |
| CFG_DOUT | O | 1 | 1 | 1 | 1 | 1 | Serial Output |
| CFG_INIT | I/O | 1 | 1 | 1 | 1 | 1 | Delay Configuration |
| Subtotal |  | 3 |  | 3 |  | 3 |  |
| TOTAL |  |  |  | 275 |  | 365 |  |

## Link Interface

CSC Trigger Primitives are coming from the Muon Port Cards (MPC) to the SP2002 via optical links. It has been agreed with Rice University that both ends of the link are instrumented with the Finisar FTRJ-8519-1-2.5 Transceivers [2], running at $1.6 \mathrm{Gbit} / \mathrm{Sec}$, which in turn are coupled with the TI TLK2501 Transceivers [3] to perform data serialization / deserialization. Refer to Figure 2 and Table 5 for details regarding the Finisar device.


Figure 2 Finisar Transceiver Pin Layouts
Table 5 Finisar Transceiver Pin Assignments

| Pin | Symbol | Name/Description | Logic Family |
| :---: | :---: | :--- | :--- |
| MS | MS | Mounting Studs for mechanical attachment. Internally connected <br> to transceiver grounds. Connection to user's ground plane is <br> recommended. |  |
| 1 | VEER | Receiver Ground (Common with Transmitter Ground) | GND |
| 2 | VCCR | Receiver Power Supply | 3.3 V |
| 3 | SD | Signal Detect. Logic 1 indicates normal operation. | LVTTL |
| 4 | RD- | Receiver Inverted DATA out. AC Coupled | PECL Swing |
| 5 | RD+ | Receiver Non-inverted DATA out. AC Coupled | PECL Swing |
| 6 | VCCT | Transmitter Power Supply | 3.3 V |
| 7 | VEET | Transmitter Ground (Common with Receiver Ground) | GND |
| 8 | TDIS | Transmitter Disable | LVTTL |
| 9 | TD+ | Transmitter Non-Inverted DATA in; 100-ohm termination <br> between TD+ and TD-, AC Coupled thereafter. | PECL Swing |
| 10 | TD- | Transmitter Inverted DATA in. See TD+ | PECL Swing |

It is supposed that Front FPGA takes control over the Finisar TDIS pin and is capable of reading back the transmitter status, or the SD pin. Note that both signals are in LVTTL_33 logic levels.

Front FPGA has a full control over the TLK2501 device as well. Detailed description of the TLK2501 signals can be found in [3], or in Table 6 below.

Table 6 Texas Instruments TLK2501 Control and Status

| TLK2501 Control / Status | Description | Comment |
| :--- | :--- | :--- |
| ENB=ENABLE | Normal / Power Down Mode | W/R |
| LEN=LOOPEN | Loop Enable (test) | W/R |
| PEN=PRBSEN | PseudoRandom Bit Stream | W/R |
| TEN=TX_EN | Transmit Enable | W/R |
| TER=TX_ER | Transmit Error Coding | W/R |
| RDV=RX_DV/LOS | Receive Data Valid / Loss of Synch | R only |
| RER=RX_ER/PRBS_PASS | Receive Error / PRBS Test Pass | R only |

## DDU Interface

Each Front FPGA delivers data to the 16-bit data bus on request of the readout logic.
Readout Start prepares internal FPGA data, sitting in the L1A DAQ FIFO for readout. All Front FPGAs output pattern of "Valid Pattern" bits to the DDU interface, so it could put it as a first word of the Input Block [4]. Then readout proceeds by exchanging the Readout Request - Request Acknowledge handshake with each Front FPGA in turn.

## Alignment FIFO

The Alignment FIFO Control group ensures carrying out the alignment procedure over all 15 CSC input links. One of the input FPGAs plays role of a master during the alignment procedure [5]. It collects write enable (/AF_WR) statuses from all of the Front FPGA chips, synchronizes it to the FIFO read clock and distributes a read enable (/AF_RD) signal back to FPGAs. All Front FPGAs begin simultaneously delivering first bunchcrossing data to their outputs.

## CCB \& VME Interface

The CCB interface provides a means of the TTC and VME control over the Front FPGA. All TTC timing signals including the master CLK40, BC0, BCR, and L1A are delivered from the CCB/VME FPGA. A few spare lines are foreseen for future developments. The VME control over Front FPGA assumes that each Front FPGA occupies space no more than 256 ( $0 \times 100$ ) byte (D8) addresses or 128 short word (D16) addresses.
Table 7 shows an example of the Front FPGA address assignments in case of 2 input links per chip.
Basically, there are three groups of VME addresses in the Front FPGA:

- Addresses, servicing individual input data streams, like Link Control/Status, Link Error Counter, Alignment FIFO Status, Test Pattern FIFO Status/Data, etc.
- Addresses, servicing all data stream in the same FPGA, like L1 Pipeline FIFO Depth, and L1A DAQ FIFO Status.
- Address common to all links, like Alignment FIFO offset, which is located only in one of the Front FPGAs. Front FPGA, which owns this address acts as a master with respect to all other Front FPGAs during alignment procedure.
Table 7 Front FPGA VME Access

| Offset | Description | Bits | Wrds | Blks | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0x00 | $1^{\text {st }}$ Link Control/Status | 16 | 1 | - | See Table 9 for details |
| 0x02 | $1^{\text {st }}$ Link Error Counter | 16 | 1 | - | See Table 10 for details |
| 0x04 | $1^{\text {st }}$ Alignment FIFO Status | 8+2 | 1 | - | See Table 11 for details |
| $0 \times 06$ | $1^{\text {st }}$ Test Pattern FIFO Status | 8+2 | 1 | - | See Table 12 for details |
| 0x08 | $1{ }^{\text {st }}$ Test Pattern FIFO | 16 | 256 | 2 |  |
| 0x10 | $1{ }^{\text {st }}$ Local Phi LUT Address High | 2 | 1 | - | See Table 13 for details |
| 0x12 | $1{ }^{\text {st }}$ Local Phi LUT Address Low | 16 | 1 | - |  |
| 0x16 | $1^{\text {st }}$ Local Phi LUT Data | 16 | 256K | 2K | Local Phi LUT Data |
| 0x20 | $1^{\text {st }}$ Global Phi LUT Address High | 4 | 1 | - | See Table 14 for details |
| 0x22 | $1{ }^{\text {st }}$ Global Phi LUT Address Low | 16 | 1 | - |  |
| 0x24 | $1{ }^{\text {st }}$ Global Phi LUT Data High | 16 | 1M | 8K |  |
| 0x26 | $1{ }^{\text {st }}$ Global Phi LUT Data Low | 16 | 1M | 8K |  |
| 0x30 | $1{ }^{\text {st }}$ Global Eta LUT Address High | 4 | 1 | - | See Table 15 for details |
| 0x32 | $1{ }^{\text {st }}$ Global Eta LUT Address Low | 16 | 1 | - |  |
| 0x36 | $1{ }^{\text {st }}$ Global Eta LUT Data | 16 | 1M | 8K |  |
|  |  |  |  |  |  |
| 0x40 | $2^{\text {nd }}$ Link Control/Status | 16 | 1 | - | See Table 9 for details |
| 0x42 | $2^{\text {nd }}$ Link Error Counter | 16 | 1 | - | See Table 10 for details |
| 0x44 | $2^{\text {nd }}$ Alignment FIFO Status | 8+2 | 1 | - | See Table 11 for details |
| 0x46 | $2^{\text {nd }}$ Test Pattern FIFO Status | 8+2 | 1 | - | See Table 12 for details |
| 0x48 | $2^{\text {nd }}$ Test Pattern FIFO | 16 | 256 | 2 |  |
| 0x50 | $2{ }^{\text {nd }}$ Local Phi LUT Address High | 1 | 1 | - | See Table 13 for details |
| 0x52 | $2{ }^{\text {nd }}$ Local Phi LUT Address Low | 16 | 1 | - |  |
| 0x56 | $2^{\text {nd }}$ Local Phi LUT Data | 16 | 256K | 2K | Local Phi LUT Data |
| 0x60 | $2^{\text {nd }}$ Global Phi LUT Address High | 3 | 1 | - | See Table 14 for details |
| 0x62 | $2^{\text {nd }}$ Global Phi LUT Address Low | 16 | 1 | - |  |
| 0x64 | $2^{\text {nd }}$ Global Phi LUT Data High | 16 | 1M | 8K |  |
| 0x66 | $2^{\text {nd }}$ Global Phi LUT Data Low | 16 | 1M | 8K |  |
| 0x70 | $2{ }^{\text {nd }}$ Global Eta LUT Address High | 3 | 1 | - | See Table 15 for details |
| 0x72 | $2^{\text {nd }}$ Global Eta LUT Address Low | 16 | 1 | - |  |
| 0x76 | $2{ }^{\text {nd }}$ Global Eta LUT Data | 16 | 1M | 8K |  |
|  |  |  |  |  |  |
| 0x80 | 3rd Link Control/Status | 16 | 1 | - | See Table 9 for details |
| 0x82 | 3rd Link Error Counter | 16 | 1 | - | See Table 10 for details |
| 0x84 | 3rd Alignment FIFO Status | 8+2 | 1 | - | See Table 11 for details |
| 0x86 | 3rd Test Pattern FIFO Status | 8+2 | 1 | - | See Table 12 for details |
| 0x88 | 3rd Test Pattern FIFO | 16 | 256 | 2 |  |
| 0x90 | 3rd Local Phi LUT Address High | 1 | 1 | - | See Table 13 for details |
| 0x92 | 3rd Local Phi LUT Address Low | 16 | 1 | - |  |
| 0x96 | 3rd Local Phi LUT Data | 16 | 256K | 2K | Local Phi LUT Data |
| 0xA0 | 3rd Global Phi LUT Address High | 3 | 1 | - | See Table 14 for details |
| 0xA2 | 3rd Global Phi LUT Address Low | 16 | 1 | - |  |
| 0xA4 | 3rd Global Phi LUT Data High | 16 | 1M | 8K |  |
| 0xA6 | 3rd Global Phi LUT Data Low | 16 | 1M | 8K |  |
| 0xB0 | 3rd Global Eta LUT Address High | 3 | 1 | - | See Table 15 for details |
| $0 \times B 2$ | 3rd Global Eta LUT Address Low | 16 | 1 | - |  |
| 0xB6 | 3rd Global Eta LUT Data | 16 | 1M | 8K |  |


| Offset | Description | Bits | Wrds | Blks | Comment |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $0 \times C 0$ | 1-2 Pipeline FIFO Depth/Status | $9+2$ | 1 | - | See Table 16 for details |
| $0 \times \mathrm{C} 8$ | 1-2 L1A DAQ FIFO Status | $8+2$ | 1 |  | See Table 17 for details |
|  |  |  |  |  |  |
| $0 \times E 0$ | Alignment FIFO Offset | 5 | 1 | - | See Table 18 for details <br> Applicable for middle <br> FPGA only |

All transceiver's control signals are writable / readable and all status signals are readable only over the VME interface by addressing the Front FPGA internal registers, see Table 8 and Table 9 below.

The TLK2501 synchronization procedure [5], when both RX_DV and RX_ER have been dropped LOW for at least three RX_CLK periods - IDLE state, always precedes the normal operation. Normal operation assumes SD and RX_DV to be HIGH and RX_ER to be LOW. To facilitate monitoring of error conditions, any combination of SD, RX_DV and RX_ER other than normal is detected and latched, Table 9. Latched statuses are accumulated over time, starting from the previous synchronization procedure. There is a 10 -bit error counter for a detailed analysis of link errors, Table 10 , which can be tuned to count either number of error words received, or carrier extend characters, or both.
Table 8 Finisar and TI Transceivers Latched Statuses and Error Counter Controls

| Latched Status/ <br> Error Counter Control | SD | RX_DV | RX_ER | Description |
| :--- | :---: | :---: | :---: | :--- |
| LLS=Latched Loss of SD | LOW | Any | Any | Latched Loss of Signal Detect |
| LID=Latched IDLE | HIGH | LOW | LOW | Latched IDLE |
| LCE=Latched CE | HIGH | LOW | HIGH | Latched Carrier Extend |
| LER=Latched Error | HIGH | HIGH | HIGH | Latched Error Propagation |
| CCE=Count CE | HIGH | LOW | HIGH | Count Carrier Extend words |
| CER=Count Errors | HIGH | HIGH | HIGH | Count Error Words |

Table 9 Link Control/Status Register Bit Assignments

| $\mathbf{1 5}$ | $\mathbf{1 4}$ | $\mathbf{1 3}$ | $\mathbf{1 2}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ | $\mathbf{9}$ | $\mathbf{8}$ | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LID | LER | LCE | LSD |  | RER | RDV | SD |  |  | PEN | LEN | ENB | TER | TEN | TD |  |  |  |  |  |  |
| Link Statuses, R only |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Link Controls, W/R |  |  |  |  |

There is a copy of Link Control/Status Register for each input link (2 or 3 per Front FPGA).

## Table 10 Link Error Counter

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CER | CCE |  |  | EC9 | EC8 | EC7 | EC6 | EC5 | EC4 | EC3 | EC2 | EC1 | EC0 |
| Spare |  | W/R |  | Spare |  | Error Counter, R only |  |  |  |  |  |  |  |  |  |

There is a copy of Link Error Counter for each input link (2 or 3 per Front FPGA).

Table 11 Alignment FIFO Status Bit Assignments

| $\mathbf{1 5}$ | $\mathbf{1 4}$ | $\mathbf{1 3}$ | $\mathbf{1 2}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ | $\mathbf{9}$ | $\mathbf{8}$ | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AFF | AEF |  |  |  |  | Spare | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 |  |
| Spare | Flags, R | Spare |  |  |  |  | Alignment FIFO Word Count, R only |  |  |  |  |  |  |  |  |

There is a copy of an Alignment FIFO Status for each input link ( 2 or 3 per Front FPGA).
Table 12 Test FIFO Status Bit Assignments

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | TFF | TEF |  |  |  |  | TC7 | TC6 | TC5 | TC4 | TC3 | TC2 | TC1 | TC0 |
|  |  | Flag |  | Spare |  |  |  | Test FIFO Word Count, R only |  |  |  |  |  |  |  |

There is a copy of a Test FIFO Status for each input link ( 2 or 3 per Front FPGA).
Table 13 Local Phi LUT Address

|  | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hi |  |  |  |  |  |  |  |  |  |  |  |  |  |  | LP17 | LP16 |
| Lo | LP15 | LP14 | LP13 | LP12 | LP11 | LP10 | LP9 | LP8 | LP7 | LP6 | LP5 | LP4 | LP3 | LP2 | LP1 | LP0 |
|  | ocal Phi Address, W/R |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Muon processing logic provides both downloading and reading back capabilities for all LUTs, including DT LUTs for A-layer muons. Extra buffers BUF1 and BUF2 are needed to provide an address/data path to nets running between two LUTs, and going nowhere else.

There is a copy of a Local Phi Address Register for each input link (2 or 3 per Front FPGA). To fill out the LUT - 256K x 16 SRAM, user has to load the Hi Address Register first, followed by loading the Lo Address Register and LUT data. Loading one 16-bit data word increases the Local Phi Address Register by 1.
Table 14 Global Phi LUT Address (VME FPGA)

|  | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hi |  |  |  |  |  |  |  |  |  |  |  |  |  | GP18 | GP17 | GP16 |
| Lo | GP15 | GP14 | GP13 | GP12 | GP11 | GP10 | GP9 | GP8 | GP7 | GP6 | GP5 | GP4 | GP3 | GP2 | GP1 | GP0 |
|  | Global Phi Address, W/R |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

There is a copy of a Global Phi Address (GPA) Register for each input link, 15 in total. To fill out the LUT - 512K x 32 SRAM, user has to load the Hi Address Register first, followed by loading the Lo Address Register and LUT data. Loading one 16-bit data word increases the Global Phi Address Register by 1. Loading Hi and/or Lo 16-bit words are independent processes. Basically for the user, the $512 \mathrm{~K} \times 32$ SRAM behaves like two $512 \mathrm{~K} x 16$ SRAMs with a common address counter. While the Front FPGA provides for all LUT control signals, either main FPGA or BUF2 provides for data.
Table 15 Global Eta LUT Address (VME FPGA)

|  | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hi |  |  |  |  |  |  |  |  |  |  |  |  |  | GE18 | GE17 | GE16 |
| Lo | GE15 | GE14 | GE13 | GE12 | GE11 | GE10 | GE9 | GE8 | GE7 | GE6 | GE5 | GE4 | GE3 | GE2 | GE1 | GE0 |
|  | lobal Phi Address, W/R |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

There is a copy of a Global Eta Address (GEA) Register for each input link, 15 in total. To fill out the LUT, user has to load the Hi Address Register first, followed by loading the Lo Address Register and LUT data. Loading one 16-bit data word increases the Global Eta Address Register by 1. While the Front FPGA provides for all LUT control signals, the main FPGA provides for data.

Table 16 Pipeline FIFO Control/Status Bit Assignments

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | PFF | PEF |  |  |  | PC8 | PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PC0 |
|  |  | Flags, R |  | ar |  |  | Pipeline FIFO Depth, W/R |  |  |  |  |  |  |  |  |

Pipeline FIFO is $\left(16^{*} 3=48\right)$-bit wide and services simultaneously three links. There is just one copy of the Pipeline FIFO Control/Status for each Front FPGA. The user has to download the same FIFO Depth parameter for all 8 Front FPGAs.

Table 17 L1A DAQ FIFO Status Bit Assignments

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DFF | DEF |  |  |  |  | DC7 | DC6 | DC5 | DC4 | DC3 | DC2 | DC1 | DC0 |
| Spare |  | Flags, R |  | Spare |  |  |  | L1A DAQ FIFO Word Count, R only |  |  |  |  |  |  |  |

L1A DAQ FIFO is $\left(16^{*} 3=48\right)$-bit wide and services simultaneously two links. There is just one copy of L1A DAQ FIFO Status for each Front FPGA.

Table 18 CSC Offset Register Bit Assignments

| $\mathbf{1 5}$ | $\mathbf{1 4}$ | $\mathbf{1 3}$ | $\mathbf{1 2}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ | $\mathbf{9}$ | $\mathbf{8}$ | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  | CO 4 | CO 3 | CO 2 | CO 1 | CO 0 |
|  |  |  |  |  |  |  |  |  |  |  | CSC Offset, $\mathrm{W} / \mathrm{R}$ |  |  |  |  |

There is just one copy of CSC Offset Register, located in the middle Front FPGA. This offset allows aligning CSC muon data with barrel data, if necessary.

Finally, Table 19 presents a Base address, assigned to each Front FPGA in the SP2002.
Table 19 Front FPGA Base Addresses

| Front FPGA \# | Base Address | Comment |  |
| :---: | :---: | :---: | :---: |
| 1 | $0 \times 0100$ | 2 or 3 links per FPGA |  |
| 2 | $0 \times 0200$ | 2 or 3 links per FPGA |  |
| 3 | $0 \times 0300$ | 2 or 3 links per FPGA |  |
| 4 | $0 \times 0400$ | 2 or 3 links per FPGA |  |
| 5 | $0 \times 0500$ | 2 or 3 links per FPGA |  |
| 6 | $0 \times 0600$ | 3 links per FPGA |  |
| 7 | $0 \times 0700$ | 3 links per FPGA |  |
| 8 | $0 \times 0800$ | 3 links per FPGA |  |

## FPGA Choice

In summary, the number of required I/Os comes to 365 in case of 3 links per chip, and to 275 in case of 2 links per Front FPGA. Note, that this number tends to increase as the design progresses, and never to decrease. For example, we may want to use a parallel or SelectMAP configuration option instead of Serial, which immediately would increases
the number of required user I/O pins by 11 . We probably would also like to keep the user I/O utilization level below 90 percent to maintain some flexibility in design development. So, the best Virtex-E candidate is an XCV300E device in FG456 package for 2 muons per FPGA and an XCV400E device in FG676 package for 3 muons per FPGA.
Choice amongst Virtex-II candidates leads to an XC2V1000 device in FG456 package, and the same device in FF896 package accordingly, see Table 20 thru Table 22.
Figure 3, Figure 4, and Figure 5 show scaled images of the packages.

Table 20 Virtex-E, Virtex-II Packages Information

| Package | Pitch | Size | Package | Pitch | Size | Package | Pitch | Size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CS144 | 0.80 | $12 \times 12$ |  |  |  |  |  |  |
| PQ240 | 0.50 | $32 \times 32$ |  |  |  | FG256 | 1.00 | $17 \times 17$ |
| BG256 | 1.27 | $27 \times 27$ |  |  |  | FG456 | 1.00 | $23 \times 23$ |
| BG352 | 1.27 | $35 \times 35$ |  |  |  | FG676 | 1.00 | $27 \times 27$ |
| BG432 | 1.27 | $40 \times 40$ |  |  |  | FG680 | 1.00 | $40 \times 40$ |
| BG560 | 1.27 | $42.5 \times 42.5$ |  |  |  | FG860 | 1.00 | $42.5 \times 42.5$ |
| BG575 | 1.27 | $31 \times 31$ | FF896 | 1.00 | $31 \times 31$ | FG900 | 1.00 | $31 \times 31$ |
| BG728 | 1.27 | $35 \times 35$ | FF1152 | 1.00 | $35 \times 35$ | FG1156 | 1.00 | $35 \times 35$ |
| BF957 | 1.27 | $40 \times 40$ | FF1517 | 1.00 | $40 \times 40$ |  |  |  |

Table 21 Virtex-E Device/Package Combinations and Maximum Number of Available I/Os

| Package | Virtex-E Available I/Os |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \mathrm{XCV} \\ 50 \mathrm{E} \end{gathered}$ | $\begin{aligned} & \text { XCV } \\ & \text { 100E } \end{aligned}$ | $\begin{aligned} & \text { XCV } \\ & \text { 200E } \end{aligned}$ | $\begin{aligned} & \text { XCV } \\ & 300 E \end{aligned}$ | $\begin{aligned} & \text { XCV } \\ & \text { 400E } \end{aligned}$ | $\begin{aligned} & \text { XCV } \\ & 600 E \end{aligned}$ | $\begin{gathered} \text { XCV } \\ \text { 1000E } \end{gathered}$ | $\begin{gathered} \text { XCV } \\ 1600 \mathrm{E} \end{gathered}$ | $\begin{gathered} \text { XCV } \\ \text { 2000E } \end{gathered}$ | $\begin{gathered} \text { XCV } \\ 2600 \mathrm{E} \end{gathered}$ | $\begin{gathered} \text { XCV } \\ 3200 \mathrm{E} \end{gathered}$ |
| CS144 | 94 | 94 | 94 |  |  |  |  |  |  |  |  |
| PQ240 | 158 | 158 | 158 | 158 | 158 |  |  |  |  |  |  |
| HQ240 |  |  |  |  |  | 158 | 158 |  |  |  |  |
| BG352 |  | 196 | 260 | 260 |  |  |  |  |  |  |  |
| BG432 |  |  |  | 316 | 316 | 316 |  |  |  |  |  |
| BG560 |  |  |  |  | 404 | 404 | 404 | 404 | 404 |  |  |
| FG256 | 176 | 176 | 176 | 176 |  |  |  |  |  |  |  |
| FG456 |  |  | 284 | 312 |  |  |  |  |  |  |  |
| FG676 |  |  |  |  | 404 | 444 |  |  |  |  |  |
| FG680 |  |  |  |  |  | 512 | 512 | 512 | 512 |  |  |
| FG860 |  |  |  |  |  |  | 660 | 660 | 660 |  |  |
| FG900 |  |  |  |  |  | 512 | 660 | 700 |  |  |  |
| FG1156 |  |  |  |  |  |  | 660 | 724 | 804 | 804 | 804 |

Table 22 Virtex-II Device/Package Combinations and Maximum Number of Available I/Os

| Package | Virtex-II Available I/Os |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \mathrm{XC2V} \\ 40 \end{gathered}$ | $\begin{gathered} \mathrm{XC2V} \\ 80 \end{gathered}$ | $\begin{gathered} \text { XC2V } \\ 250 \end{gathered}$ | $\begin{gathered} \text { XC2V } \\ 500 \end{gathered}$ | $\begin{gathered} \text { XC2V } \\ 1000 \end{gathered}$ | $\begin{gathered} \mathrm{XC2V} \\ 1500 \end{gathered}$ | $\begin{gathered} \text { XC2V } \\ 2000 \end{gathered}$ | $\begin{gathered} \text { XC2V } \\ 3000 \end{gathered}$ | $\begin{gathered} \text { XC2V } \\ 4000 \end{gathered}$ | $\begin{aligned} & \text { XC2V } \\ & 6000 \end{aligned}$ | $\begin{aligned} & \text { XC2V } \\ & 8000 \end{aligned}$ |
| CS144 | 88 | 92 | 92 |  |  |  |  |  |  |  |  |
| FG256 | 88 | 120 | 172 | 172 | 172 |  |  |  |  |  |  |
| FG456 |  |  | 200 | 264 | 324 |  |  |  |  |  |  |
| FG676 |  |  |  |  |  | 392 | 456 | 484 |  |  |  |
| FF896 |  |  |  |  | 432 | 528 | 624 |  |  |  |  |
| FF1152 |  |  |  |  |  |  |  | 720 | 824 | 824 | 824 |
| FF1517 |  |  |  |  |  |  |  |  | 912 | 1104 | 1108 |
| BG575 |  |  |  |  | 328 | 392 | 408 |  |  |  |  |
| BG728 |  |  |  |  |  |  | 456 | 516 |  |  |  |
| BF957 |  |  |  |  |  |  | 624 | 684 | 684 | 684 | 684 |

All devices in a particular package are pin-out (footprint) compatible. In addition, the FG456 and FG676 packages are compatible, as are the FF896 and FF1152 packages.


Figure 3 Fine Pitch BGA (FG456) Package, $23 \times 23 \mathrm{~mm}$, Scale 1:1


Figure 4 Flip-Chip BGA (FG676) Package, $27 \times 27 \mathrm{~mm}$, Scale 1:1


Figure 5 Flip-Chip BGA (FF896) Package, $31 \times 31$ mm, Scale 1:1

We suggest staying with the option of having 3 muons per Front FPGA and using XC2V1000 devices in FF896 packages. The PCB routing would require at least 4 signal and 3 plane layers. Overwhelming majority of user I/Os will be using LVTTL_25 I/O standard with at least one I/O bank using LVTTL_33 I/O standard. Table 23 gives reference prices for XC2V1000 devices.

Table 23 Reference Prices for XC2V1000 Devices

| Device | Reference Price |
| :--- | :--- |
| XC2V1000-4FF896C | $\$ 397.00$ |
| XC2V1000-5FF896C | $\$ 556.00$ |

A separate FPGA chip will service the DDU interface.

Table 24 Revision Histories

| Date | Revision \# | What's new |
| :--- | :--- | :--- |
| February 19, 2002 | Initial Proposal |  |
| March 14, 2002 | Rev 1.0 | Figure 1, Changed ETAG LUT output from NxD11 to NxD12 <br> Figure 1, Changed text label from "A-Layer" to "ME1" <br> Figure 1, Added NxD4 datapath to Main FPGA for ME1 muons |

[1] CSC Track-Finder Update, D.Acosta's Presentation at UCLA, Dec. 2001; at http://www.phys.ufl.edu/~acosta/cms/srsp dec01.pdf
[2] Finisar FTRJ-8519-1-2.5 2x5 Pin SFF Product Specification, July 2000.
[3] Texas Instruments SLLS427A - TLK2501 1.6 to 2.5 GBPS Transceiver, Aug 2000, revised Oct 2000.
[4] Sector Processor - DDU Interface,
at http://red.pnpi.spb.ru/~uvarov/tf_crate/LU-SP DDU_Interface.pdf
[5] MPC - SP Synchronization Procedure, at http://red.pnpi.spb.ru/~uvarov/tf_crate/LU-MPC_SP_Synch_Procedure_Ver1d1.pdf

