Notes on Curvature in two dimensions

The parallel postulate of Euclidean geometry states that given a straight line \(L \) and a point \(p \) not on \(L \), there is precisely one straight line which intersects \(p \) and does not intersect \(L \). It follows, that the perpendicular distance between two straight lines is constant if they do not intersect.

On a manifold with curvature, we expect this postulate to hold no longer. In particular given two “straight” lines which are initially parallel, the distance between them might change. In this context a line is “straight” if it is a geodesic and is, therefore, a curve which extremizes the distance between two points on the line.

As an example, consider line \(L \) to be the \(x \)-axis. Let a point \(p \) be a small perpendicular distance \(\xi \) away from \(L \), and consider a straight line \(L' \) which intersects \(p \). Assume that the perpendicular distance \(\xi(x) \) is given by

\[
\xi(x) = a + bx + \frac{1}{2}cx^2 + \frac{1}{6}dx^3 + \ldots
\]

for constants \(a, b, \ldots \) If the manifold is flat and we are using Cartesian coordinates, then we expect that \(c, d \) and the constant coefficients in all higher order terms are zero. In particular, we note that

\[
d\xi(x)/dx = b
\]

and

\[
d^2\xi(x)/dx^2 = 0.
\]

This is the hallmark of a flat manifold: The perpendicular distance between two geodesics changes linearly in the distance along one geodesic.

Similarly, we expect that if a manifold is not flat, then the perpendicular distance between two geodesics changes in a more complicated manner.

For a two dimensional manifold, we can define the scalar curvature \(R \) at a point \(p \) on the manifold from the equation

\[
\frac{d^2\xi(x)}{dx^2} = -R\xi
\]

where \(p \) is a point on a geodesic \(L \), parameterized by distance \(x \), and \(\xi(x) \) is the infinitesimal distance to any nearby geodesic \(L' \). For a given \(p \), it should be modestly surprising that \(R \) is unique, and independent of which geodesics are being considered. Later, we will see why this is so. We will also derive a slightly different version of the previous equation, called the equation of geodesic deviation.

As an example consider the geometry of a two-sphere of radius \(a \), and let geodesic \(L \) be a curve of constant \(\phi = 0 \) while \(\theta = 0, \pi \), and let \(L' \) be a curve of constant \(\phi = \delta\phi \) while \(\theta = 0, \pi \). \(\delta\phi \) is assumed to be infinitesimal. The distance from the axis, along one of these geodesics is \(x = a\theta \). The distance between these two geodesics is \(\xi(x) = a\delta\phi \sin\theta = a\delta\phi \sin(x/a) \). We calculate

\[
\frac{d^2\xi(x)}{dx^2} = -\frac{\delta\phi}{a} \sin(x/a) = -\frac{1}{a^2}\xi(x).
\]
We conclude that the scalar curvature of a two-sphere is \(R = 1/a^2 \).

For a second example, let the two dimensional manifold consist of time \(t \), and radius \(r \) from the center of the Earth of mass \(M \). The claim is made that objects in free-fall move along geodesics of curved spacetime. If this is so, then we should be able to measure the scalar curvature of spacetime by observing objects in free-fall. Consider two objects, \(m_1 \) and \(m_2 \), which are initially at rest at \(r_1 \) and \(r_1 + \delta r \). Let the two objects be released simultaneously. \(m_1 \) falls at a rate governed by

\[
\frac{d^2 r_1}{dt^2} = -\frac{GM}{r_1^2}
\]

whereas \(m_2 \) falls at a rate given by

\[
\frac{d^2 (r_1 + \delta r)}{dt^2} = -\frac{GM}{(r_1 + \delta r)^2} \approx -\frac{GM(1 - 2\delta r/r_1)}{r_1^2},
\]

through first order in \(\delta r \). Subtracting these equations results in

\[
\frac{d^2 \delta r}{dt^2} = \frac{2GM\delta r}{r_1^3}.
\]

We conclude that the scalar curvature of this manifold is \(R = 2GM/r^3 \), after I change the sign to account for the fact that having time as one of our coordinates requires a slightly different definition of scalar curvature.

WARNING: This description of curvature is not intended to be complete and, specifically, is appropriate only for a two dimensional manifold.