Euler-Lagrange Equations for charged particle in a field

The Lagrangian is
\[L = \frac{1}{2} m \dot{r}^2 + q(A \cdot \dot{r} - \phi) \]

Euler Lagrange Equations are
\[\frac{d}{dt} \frac{\partial L}{\partial \dot{r}} = \frac{\partial L}{\partial r} \]
so calculate left and right hand sides separately:
\[\frac{\partial L}{\partial r} = q \frac{\partial}{\partial r} (A \cdot \dot{r}) - q \frac{\partial \phi}{\partial r} \]
\[\frac{d}{dt} \frac{\partial L}{\partial \dot{r}} = m \ddot{r} + q \frac{d}{dt} A \]

Now recall \(A \) is the vector potential evaluated at the position of the particle \(r \) at time \(t \). The particle is following a trajectory \(r(t) \), so \(A = A(r(t), t) \). The total time derivative thus gives two terms,
\[\frac{d}{dt} A = \frac{\partial A}{\partial t} + \frac{\partial r}{\partial t} \cdot \frac{\partial}{\partial r} A \]
or, to be completely clear, for a given component \(A_i \),
\[\frac{d}{dt} A_i = \frac{\partial A_i}{\partial t} + \frac{\partial r_j}{\partial t} \cdot \frac{\partial}{\partial r_j} A_i \]
where a sum over repeated indices is implied. So, putting the Euler-Lagrange equation together for index \(i \) gives
\[m \ddot{r}_i = -q \frac{\partial}{\partial r_i} \phi - q \frac{\partial A_i}{\partial t} + q \left(\frac{\partial A_j}{\partial r_i} - \frac{\partial A_i}{\partial r_j} \right) \dot{r}_j \]
\[= q (E + \dot{r} \times B)_i \]
which is the \(ith \) component of the Lorentz force. To convince yourself that the last term in parentheses really turns into the \(\dot{r} \times B \) term, evaluate
\[(\dot{r} \times B) = (\dot{r} \times (\nabla \times A))_i = \epsilon_{ijk} \dot{r}_j (\nabla \times A)_k = \epsilon_{ijk} \dot{r}_j \epsilon_{k\ell m} \frac{\partial}{\partial r_\ell} A_m \]
\[= \left(\delta_{i\ell} \delta_{km} - \delta_{i\ell} \delta_{km} \right) \dot{r}_j \frac{\partial}{\partial r_\ell} A_m \]
\[= \dot{r}_j \frac{\partial}{\partial r_i} A_j - \dot{r}_j \frac{\partial}{\partial r_j} A_i = \left(\frac{\partial A_j}{\partial r_i} - \frac{\partial A_i}{\partial r_j} \right) \dot{r}_j \]
\[QED \]
(I used the cyclic property of the Levi-Civita symbol \(\epsilon_{ijk} = \epsilon_{jki} = \epsilon_{kij} \), and the identity \(\epsilon_{ijk} \epsilon_{ilm} = \delta_{j\ell} \delta_{km} - \delta_{jm} \delta_{k\ell} \).