Energy Stored in Magnetic Field

→ Just like electric fields, magnetic fields store energy

$$u_E = \frac{1}{2} \varepsilon_0 E^2$$
 Electric field energy density $u_B = \frac{B^2}{2 \mu_0}$ Magnetic field energy density

→Let's see how this works

Energy of an Inductor

- → How much energy is stored in an inductor when a current is flowing through it?
- → Start with loop rule

$$\mathcal{E} = iR + L\frac{di}{dt}$$

→ Multiply by i to get power equation

$$\mathcal{E}i = i^2 R + Li \frac{di}{dt}$$

 $\mathcal{E}i = i^2 R + Li \frac{di}{dt}$ Power produced = dissipated + stored

 \rightarrow Let P_1 = power stored in inductor

$$P_L = \frac{dU_L}{dt} = Li \frac{di}{dt}$$

→ Identify energy stored in inductor

$$U_L = \int Lidi = \frac{1}{2}Li^2$$

→ Similar to capacitor:

Energy in Magnetic Field (2)

→Apply to solenoid (constant B field)

$$U_L = \frac{1}{2}Li^2 = \frac{1}{2}(\mu_0 n^2 lA)i^2$$

→Use formula for B field: $B = \mu_0 ni$

$$U_L = \frac{B^2}{2\mu_0} lA$$

$$u_B = \frac{B^2}{2\mu_0}$$
 B field

$$u_E = \frac{1}{2} \varepsilon_0 E^2$$
 E field

→This is generally true even if B is not constant

N turns

Energy Calculation Examples

→ Calculate u_B for earth field, $B = 5 \times 10^{-5} \text{ T}$

$$u_B = \frac{B^2}{2\mu_0} = \frac{\left(5 \times 10^{-5}\right)^2}{2 \times 4\pi \times 10^{-7}} \approx 10^{-3} \text{ J/m}^3$$

→ Calculate u_B for neutron star, $B = 10^8$ T

$$u_B = \frac{B^2}{2\mu_0} = \frac{\left(10^8\right)^2}{2 \times 4\pi \times 10^{-7}} \approx 4 \times 10^{21} \text{ J/m}^3$$

→ Calculate u_B for magnetar, $B = 10^{11}$ T

$$u_B = \frac{B^2}{2\mu_0} = \frac{\left(10^{11}\right)^2}{2 \times 4\pi \times 10^{-7}} \approx 4 \times 10^{27} \text{ J/m}^3$$

$$\rho = \frac{u_B}{c^2} \simeq 4 \times 10^{10} \text{ kg/m}^3$$

Equivalent mass density From $E = mc^2$

Web Sites on Neutron Stars, Magnetars

→Original magnetar discovery

- http://science.nasa.gov/newhome/headlines/ast20may98_1.htm
- http://www.firstscience.com/site/articles/solarflares.asp

→ More recent magnetar discovery (Feb. 2005)

http://www.physorg.com/news3112.html

→Online articles on magnetars

- http://solomon.as.utexas.edu/~duncan/magnetar.html
- http://www.space.com/scienceastronomy/magnetar_formation_05 0201.html
- http://apod.gsfc.nasa.gov/apod/ap041126.html

→ Articles on neutron stars (second one has videos)

- http://www.astro.umd.edu/~miller/nstar.html
- http://antwrp.gsfc.nasa.gov/htmltest/rjn_bht.html

Quiz on Energy

- →Each circuit has identical values of V, R and L. After the switch has been closed for a long time, which circuit has the largest energy stored in the inductor L?
 - ◆ (1) 1 only
 - ◆ (2) 2 only
 - ◆ (3) 3 only

Answer is modified from what was given in class. Answers 2 and 3 were accepted

Gigajoule Magnet at CERN

→ CMS experiment at CERN

- ◆ p-p collisions at world's highest energy in 2009
- Hope to discover new particles, find the origin of mass and new fundamental forces

Compact Muon Solenoid

Compact Muon Solenoid

CMS Experiment Magnet

→ Large central solenoid magnet to study particle production

$$\bullet$$
 B = 4T, R = 3.15 m, L = 12.5 m

◆ U_B = 2.6 x 10⁹ J = 2.6 gigajoules!!

$$U_B = \frac{B^2}{2\mu_0} lA = \frac{4^2}{2 \times 4\pi \times 10^{-7}} (\pi \times 3.15^2) (12.5)$$

http://www.spacedaily.com/news/energy-tech-04b.html

Articles on CMS and LHC

- → Large Hadron Collider at CERN
 - http://public.web.cern.ch/public/en/LHC/LHC-en.html
- → Home page and picture of CMS experiment
 - http://cms.cern.ch/
- → Wikipedia articles
 - http://en.wikipedia.org/wiki/Compact_Muon_Solenoid
 - http://en.wikipedia.org/wiki/Large_Hadron_Collider