1. A thin straight glass rod of length \(L \) is mounted on the \(x \)-axis with one end at the origin. See sketch. The rod is charged NON-uniformly with a linear charge density \(\lambda = ax \). Here \(a \) is a constant with dimensions charge/length. Calculate the electric potential at the point \(P \) a distance \(D \) away, setting potential at infinity to be zero.

\[
\begin{align*}
(1) & \quad ka (L - D \ln (1 + L/D)) \\
(2) & \quad ka (L + D \ln (1 + L/D)) \\
(3) & \quad -ka (L - D \ln (1 + L/D)) \\
(4) & \quad ka (D - L \ln (1 + L/D)) \\
(5) & \quad -ka (D - L \ln (1 + L/D))
\end{align*}
\]

SOLUTION:

Line element \(dx \) has charge \(dq = \lambda dx = axdx \) and is a distance \(x + D \) from point \(P \). Therefore

\[
V = k \int_{0}^{L} \frac{dq}{x + D} = k \int_{0}^{L} \frac{ax}{x + D} dx
\]

Change variables using \(u = x + D \) and \(du = dx \)

\[
V = ka \int_{D}^{D+L} \frac{u-D}{u} du = ka \int_{D}^{D+L} \left(1 - \frac{D}{u} \right) du
\]

\[
= ka(u - D \ln u)|_{D}^{D+L}
\]

\[
= ka(L - D \ln(1 + L/D))
\]

NOTE: One could eliminate the wrong answers by applying common sense only:

- a) At \(L = 0 \), \(V \) must be zero (no charge left). This eliminates (4) and (5).
- b) \(V \) must be positive. This eliminates (3): e.g., try \(L = D \)
- c) At \(D = \infty \), \(V = 0 \). This eliminates (2): \(ka \left(L + D \ln (1 + \frac{L}{D}) \right) \approx ka \left(L + D \frac{1}{D} \right) \approx 2kaL \neq 0 \).

2. A parallel plate capacitor (plate area \(A \), plate separation \(d \)) of capacitance \(C \) is charged to a potential difference \(V \), creating an electrostatic field \(E \) the between plates. The stored energy is \(U \). The charging battery is disconnected and a slab of dielectric (dielectric constant \(k \)) is now inserted between the plates without touching them. The electrostatic field between the plates and the stored energy become, respectively:

\[
(1) \ E/k; \ U/k \quad (2) \ kE; \ kU \quad (3) \ kE; \ U/k \quad (4) \ E/k; \ U/2k \quad (5) \ E/k^2; \ U/k^2
\]

SOLUTION:

- a) The electrostatic field in material of dielectric constant \(k \) is \(k \) times smaller than it would be in vacuum. Therefore \(E_k = \frac{E}{k} \)
- b) With dielectric inserted \(C_k = kC, \ U_k = \frac{1}{2} \frac{E^2}{k} = \frac{1}{2} \frac{E^2}{k} = \frac{U}{k} \)
3. An automobile battery jumper cable is composed of 9 identical strands of copper wire, twisted together. A length \(L \) of this cable having resistance \(R \) has the wires untwisted, laid end-to-end, and welded together making a single-strand conductor of length \(9L \). Neglecting the effects of welding, what is the resistance of the ‘new’ wire?

(1) \(81R \)
(2) \(9R \)
(3) \(R \)
(4) \(18R \)
(5) \(R/9 \)

SOLUTION:
A parallel combination of 9 strands with resistance \(R \) implies that each strand has resistance \(r = \frac{9R}{9} \). Therefore, 9 strands laid end-to-end should have resistance of \(9r = 81R \).

4. How many time constants \(\tau \) must elapse for an initially uncharged capacitor in an RC series circuit to be charged to 99% of its equilibrium charge?

(1) \(4.6\tau \)
(2) \(0.99\tau \)
(3) \(0.03\tau \)
(4) \(1.7\tau \)
(5) \(2.3\tau \)

SOLUTION:
Charge \(q \) across the capacitor is \(q = q_0(1 - e^{-t/\tau}) \) Solve \(0.99 = 1 - e^{-t/\tau} \) to find \(t/\tau = 4.6 \), or \(t = 4.6\tau \).

5. Find the current in the 5.0Ω resistor in the circuit shown.

(1) 1.5A
(2) 0.42A
(3) 3.0A
(4) 2.4A
(5) 0.67A

SOLUTION:
Resistance of upper branch is the parallel combination of 6.0Ω and 12Ω in series with 4Ω. Calculate \(R_{\text{upper}} = \frac{6 \times 12}{6+12} + 4 = 8\Omega \). Resistance of lower branch is the series combination 3Ω + 5Ω = 8Ω. The two branches in parallel have a resistance of 4Ω. The current through the combined resistors is \(\frac{12V}{4\Omega} = 3 \text{ A} \). This current splits evenly between the two branches (they have equal resistance); hence 1.5 A per branch or 1.5 A through the 5.0Ω resistor.
6. Four charges are fixed at the corners of a rectangle, as shown. Assume that \(a = 4.0 \text{ m} \), \(b = 3.0 \text{ m} \), and that \(q_1 = +q \), \(q_2 = -2q \), \(q_3 = 3q \), \(q_4 = -4q \), in which \(q = 1.0 \mu \text{C} \). Find the electric potential energy of this system of charges.

\[
\begin{align*}
q_1 & \quad q_2 \\
q_3 & \quad q_4
\end{align*}
\]

\[\text{(1) } -42 \text{ mJ} \quad \text{(2) } -740 \text{ mJ} \quad \text{(3) } -3.0 \text{ mJ} \quad \text{(4) } +740 \text{ mJ} \quad \text{(5) } +42 \text{ mJ}\]

SOLUTION:

Four charges make six different pairs. The total energy is:

\[
U = U_{12} + U_{13} + U_{14} + U_{23} + U_{24} + U_{34}
\]

\[
= \frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_1 q_4}{r_{14}} + \frac{q_2 q_3}{r_{23}} + \frac{q_2 q_4}{r_{24}} + \frac{q_3 q_4}{r_{34}}
\]

\[
= kq^2 \left[-\frac{2}{4} + \frac{3}{5} - \frac{4}{3} - \frac{6}{5} + \frac{8}{3} - \frac{12}{4} \right]
\]

\[
= 4.6kq^2 = -42 \text{ mJ}
\]

7. Two previously uncharged capacitors are connected in series and then charged with a 12-V source. One capacitor is 30\(\mu \text{F} \) and the other is unknown. If the voltage across the 30\(\mu \text{F} \) capacitor is 8 V, find the capacitance of the unknown capacitor.

\[
\begin{align*}
\text{C} & \quad \text{12 V} \\
30 \mu \text{F} & \quad \text{8 V}
\end{align*}
\]

\[
\text{(1) } 60 \mu \text{F} \quad \text{(2) } 120 \mu \text{F} \quad \text{(3) } 240 \mu \text{F} \quad \text{(4) } 4 \mu \text{F} \quad \text{(5) } 20 \mu \text{F}
\]

SOLUTION:

Charge on 30\(\mu \text{F} \) capacitor \(q = CV = (30 \mu \text{F}) (8 \text{V}) = 240 \mu \text{C} \). Voltage across unknown capacitor is 12 V – 8 V = 4 V. Same charge on both capacitors, therefore

\[
C = \frac{q}{V} = \frac{240 \mu \text{C}}{4 \text{V}} = 60 \mu \text{F}
\]
8. Two small spheres of mass \(m = 1 \text{ kg} \) are charged with \(q = 1 \text{C} \) each and placed at a distance of 1 m from each other. Since they repel each other, they start flying apart. Find the velocity of each of the spheres when they are separated by a distance of 2 m.

(1) 67 km/s (2) 47 km/s (3) 134 km/s (4) 190 km/s (5) 268 km/s

SOLUTION:

Initial energy = \(E_i = KE_i + PE_i = 0 + k\frac{q^2}{r_i} \)

Final energy = \(E_f = 2\left(\frac{1}{2}mv^2\right) + k\frac{q^2}{r_f} \)

Set \(E_i = E_f \) to get

\[v = \sqrt{\frac{k}{m} \left(\frac{1}{r_i} - \frac{1}{r_f} \right)} = 67 \text{ km/s} \]

9. A cylindrical resistor of radius 5.0 mm and length 2.0 cm is made of material that has a resistivity of \(3.5 \times 10^{-5} \Omega \cdot \text{m} \). What is the current density when the energy dissipation rate is 1.0 W?

(1) 1.35 E5 Am\(^{-2}\) (2) 2.65 E3 A (3) 6.58 E10 Am\(^{-1}\) (4) 2.41 E6 Am\(^{-2}\) (5) 1.19 E2 Am\(^{-2}\)

SOLUTION:

Power \(P = \dot{v}^2 R = (JA)^2 \frac{\rho L}{A} = \rho LJ^2 A \). Solve for \(J = \left(\frac{P}{\rho LA}\right) = 1.35 \times 10^5 \frac{A}{m^2} \).

Using \(L = 2.0 \text{cm} = 0.02m, \rho = 3.5 \times 10^{-5} \Omega \cdot \text{m}, \ P = 1 \text{ Watt} \) and \(A = \pi r^2 \) with \(r = 5.0 \text{mm} = 5 \times 10^{-3} \text{m} \).

10. What is the current through \(R_2 \) in the figure?

[Diagram of the circuit with labeled resistances and currents]

\(I_1 = 100 \ \Omega \)
\(R_2 = R_3 = 50 \ \Omega \)
\(R_4 = 75 \ \Omega \)
\(E = 6.0 \ \text{V} \)

(1) 0.02 A (2) 1 A (3) 0.05 A (4) 0.015 A (5) 0.25 A

SOLUTION:

\(R_2, R_3, R_4 \) are parallel. Therefore \(R_{eq} = R_1 + \frac{R_2 R_3 R_4}{R_2 R_3 + R_2 R_4 + R_3 R_4} = 100\Omega + 18.75\Omega = 118.75\Omega \). Voltage across \(R_3 \) is

\(I_1 R_1 = 5.05 \text{ V} \) and voltage across the parallel combination is therefore \(6 \text{ V} - 5.05 \text{ V} = 0.95 \text{ V} \). Current \(I_2 = \frac{0.95 \text{ V}}{R_2} = 0.019 \text{ A} \) is

\(A = 0.02 \text{ A} \).