Chapter 9 Answers to Problems

1. 49 atm 2. 140 N 3. 22 kPa 4. (a) 1.0×10^5 N (b) 2.2×10^4 lb (c) The pressure of the air under the desktop pushes upward counteracting the downward force. 5. The baby applies 2.0 times as much pressure as the adult. 6. (a) 420 N (b) No force is needed. 7. 4.0 kN southward 8. 88.0 kPa 9. 1.0 m 10. (a) 625 N (b) 6.25 mm (c) 16.0 11. (a) 30 N (b) 5.8 N·m 12. 31 m 13. 2.0 atm 14. 1.0 m 15. 0.126 16. 2.9 N 17. 1.0 MN 18. 10 km 19. (a) 343 kPa (b) 410 Pa 20. (a) 21 kPa (b) 3.1 lb/in^2 (c) 0.21 atm (d) 160 torr 21. (a) 2.2×10^5 Pa (b) 1700 torr (c) 2.2 atm 22. 15 cm 23. 114.0 cm Hg 24. 390 Pa 25. (a) 5.6 cm (b) 0.37 cm 26. 211 mm Hg 27. 250 kg/m^3 28. 1.5 m 29. (a) 91.7% (b) 0.917 30. (a) 140 kg/m^3 (b) 18% 31. (a) 8.8 N upward (b) 9.6 N upward 32. 0.74 g/cm^3 33. 100% 34. (a) 0.910 (b) 1.28 cm (c) 0.13 cm 35. 0.78 36. 0.17 cm^3 37. Yes 38. 1080 kg/m^3 39. (a) 9.8 m/s^2 upward (b) 3.3 m/s^2 upward (c) 68.6 m/s^2 upward 40. 0.80 g downward 41. 50 m/s 42. 28 cm/s 43. (a) 39.1 cm/s (b) 78.5 cm^3/s (c) 78.5 g/s 44. 3.2 m/s 45. 1.12×10^5 Pa 46. 5.0×10^5 N 47. 1.9×10^5 N 48. (a) 1.0×10^5 N (b) 85 m/s 49. 310 kPa 50. 1.82 m/s 51. 8.6 m 52. (a) 78 W (b) 392 kPa (c) At the bottom 53. 1/8 the original flow rate 54. (a) 6850 Pa (b) 0.685 N 55. 12 m/s 56. 0.040 m^3/s 57. 17×10^5 Pa 58. (a) 50 Pa (b) 1100 Pa (c) 13 kPa 59. (b) R = 8ηL/πr^4 60. 0.4 Pa·s 61. 2.4 Pa·s 62. (a) 1.3×10^-10 N (b) 2.6×10^-14 W 63. 1.5 cm/s 64. Since m/v^2 is constant, the drag force is primarily viscous. 65. Since m/v^2 is constant, the drag force is primarily turbulent. 66. 7.0 mm/s 67. 2.9 cm/s 68. 5 Pa 69. (a) 9×10^-6 N (b) 5 mg 70. (a) γLΔs (b) ΔE = γAA 71. (a) 1.54 N (b) 1.54×10^4 N (c) For a given depth, the pressure is the same everywhere, so the very tall, narrow column of water is as effective as having a whole barrel of water filled to the same height and pushing upward on the barrel top. 72. (a) 0.794 N (b) 0.544 N 73. (a) 7.43% (b) 1060 kg 74. The scale reading for the pine doesn’t change. 75. (a) 5.94 m/s (b) As long as we can assume that Bernoulli’s equation applies, it doesn’t matter what fluid is in the vat. (c) The speed would be reduced by a factor of 0.40. 76. 12.5 N/m 77. 230 kg 78. (a) 1.10×10^8 Pa (b) 1.1×10^8 N 79. 23.0 m 80. 20% 81. 110 m 82. (a) 0.600W (b) 0.64W 83. 1.1 cm 84. 0.4 mm/s 85. 87. 27 kPa 86. 76 Pa 87. (a) 2.2 m/s up (b) 21 kPa/s 88. (a) 10.3 m (b) A pump at the bottom of the well does not rely on a pressure difference to bring the water to the surface; it pushes the water up from below. 89. (a) 1.4 N (b) 0.43 N upward (c) 6.8 m/s^2 downward 90. 8.7 kg 91. d is not a linear function of ρ; d = m/πρr^2 92. 10.0 cm (b) 0.814 (c) 0.545 93. (a) 26 m/s (b) 2.6 m/s 94. 270 m/s 95. 0.83 g/cm^3 96. (b) 8.0 km (c) lower limit 97. (a) 5.2 kPa = 0.051 atm (b) 11.8 Pa/m (c) 8.61 km (d) A decreasing air density means that atmosphere extends to a higher altitude. 98. 220% (b) 0.68