Clicker Questions
Question P1.03

Description: Reasoning with geometric optics and ray-tracing.

Question
An object is located on the optical axis and a distance of 8 cm from a thin converging lens having focal length 10 cm. the image of the object is

1. real, upright, and smaller than the object.
2. real, inverted, and smaller than the object.
3. real, inverted, and larger than the object.
4. virtual, upright, and smaller than the object.
5. virtual, inverted, and larger than the object.
6. virtual, upright, and larger than the object.
7. None of the above.

Commentary

Purpose: To develop your ability to reason qualitatively with geometric optics.

Discussion: You can plug the given values into the thin lens formulae for image position and magnification, and if you use them correctly and know how to interpret the numbers you get, you can answer this question. However, the question does not ask you to solve for the image location or magnification; it merely asks for a qualitative answer. For this, a simple ray tracing diagram will suffice, and is less prone to error.

Drawing the three principal rays from the source object through the lens, you will see that they do not converge on the opposite side of the lens, but spread apart as if they had originated at a point behind the source (farther from the lens), on the same side of the optical axis as the source point, and farther from the lens axis than the source point. So, the image is virtual, upright, and larger than the source: answer (6).

Key Points:

• Refrain from quantitative calculation when qualitative reasoning will suffice.
• Graphical representations can be powerful tools for analyzing a situation and answering questions.
• Know how to use the three “principal rays” to draw ray-tracing diagrams.

For Instructors Only

To help students appreciate the value of graphical representations for thinking and problem-solving, we must show them questions for which these tools are clearly superior to formula-driven approaches.

Students should be encouraged to solve this problem both ways; that will help them interpret each better.
An image is formed by a converging lens. Suppose the bottom half of the lens is covered, as shown.

What happens to the image?

1. The image disappears.
2. The image fades.
3. The image rotates.
4. The image moves relative to the lens.
5. The top half of the image disappears.
6. The bottom half of the image disappears.
7. Nothing.
8. None of the above.

Commentary

Purpose: To develop your understanding of ray optics, and confront a common misconception.

Discussion: Pick any point on the source object. Light emanates from that point in all directions. In some directions, it strikes the lens and is refracted as it passes through the front and rear surfaces. All the light from this one point that passes through the lens converges again and passes through one point on the other side of the lens, before continuing on in different directions and spreading out again. This point of convergence is the *real image* of that point on the source object, and if you put a projection screen there, you will see an image of the point. The images of adjacent points on the source object occur adjacent to each other in the image plane, creating an image of the entire source object.

Not all the light from the source point reaches that image point; only light that passes through the lens does. If the lens is made larger, more light is refracted to the image point, and the image appears brighter. If the lens is made smaller, less light is refracted, and the image appears dimmer.

If half the lens is covered, only half as much light from any source point reaches its image point, so the image fades (becomes less bright). But some light from every source point still gets to its corresponding image point, bent through the unobscured half of the lens, so the entire image is still visible. Thus, answer (2) is best.
Key Points:

- Light from each point on a source object passes through every part of a lens on its way to the image point.
- The diameter of a lens affects the brightness of the image it creates: the larger the lens, the more light it can capture and bend, and the brighter the image.

For Instructors Only

Students very often think that half the image disappears. Others, accustomed to drawing the three “principal rays” to locate images, think that if one or more of the principal rays are disrupted, the image will disappear.

QUICK QUIZZES

1. At C.

2. (c). Since \(n_{\text{water}} > n_{\text{air}} \), the virtual image of the fish formed by refraction at the flat water surface is closer to the surface than is the fish. See Equation (23.9).

3. (a) False. A concave mirror forms an inverted image when the object distance is greater than the focal length.

 (b) False. The magnitude of the magnification produced by a concave mirror is greater than 1 if the object distance is less than the radius of curvature.

 (c) True.

4. (b). In this case, the index of refraction of the lens material is less than that of the surrounding medium. Under these conditions, a biconvex lens will be divergent.

5. Although a ray diagram only uses 2 or 3 rays (those whose direction is easily determined using only a straight edge), an infinite number of rays leaving the object will always pass through the lens.

6. (a) False. A virtual image is formed on the left side of the lens if \(p < f \).
True. An upright, virtual image is formed when $p < f$, while an inverted, real image is formed when $p > f$.

False. A magnified, real image is formed if $2f > p > f$ and a magnified, virtual image is formed if $p < f$.

ANSWERS TO MULTIPLE CHOICE QUESTIONS

1. The image of a real object formed by a flat mirror is always an upright, virtual image, that is the same size as the object and located as far behind the mirror as the object is in front of the mirror. Thus, statements (b), (c), and (e) are all true, while statements (a) and (d) are false.

2. From the mirror equation, $1/p + 1/q = 2/R = 1/f$, with $f > 0$ since the mirror is concave, the image distance is found to be

$$q = \frac{pf}{p-f} = \frac{(16.0 \text{ cm})(6.00 \text{ cm})}{16.0 \text{ cm} - 6.00 \text{ cm}} = 9.60 \text{ cm}$$

Since $q > 0$, the image is located 9.60 cm in front of the mirror, and choice (a) is the correct answer.

3. From the mirror equation, $1/p + 1/q = 2/R = 1/f$, with $f < 0$ since the mirror is convex, the image distance is found to be

$$q = \frac{pf}{p-f} = \frac{(16.0 \text{ cm})(-6.00 \text{ cm})}{16.0 \text{ cm} - (-6.00 \text{ cm})} = -4.36 \text{ cm}$$

Since $q < 0$, the image is virtual and located 4.36 cm behind the mirror. Choice (d) is the correct answer.

4. For a converging lens, the focal length is positive, or $f > 0$. Since the object is virtual, we know that the object distance is negative, or $p < 0$ and $p = -|p|$. Thus, the thin lens equation gives the image distance as

$$q = \frac{pf}{p-f} = \frac{-|p|f}{-|p|-f} = +\left(\frac{|p|}{|p|+f}\right)f$$

Since $|p|$ and f are positive quantities, we see that $q > 0$ and the image is real. Also, since $|p|/(|p| + f) < 1$, we see that $q < f$. Thus, we have shown that choices (a) and (d) are false statements, while choices (b), (c), and (e) are all true.

5. For a convergent lens, $f > 0$, and because the image is real, $q > 0$. The thin lens equation, $1/p + 1/q = 1/f$, then gives

$$p = \frac{qf}{q-f} = \frac{(12.0 \text{ cm})(8.00 \text{ cm})}{12.0 \text{ cm} - (8.00 \text{ cm})} = +24.0 \text{ cm}$$

Since $p > 0$, the object is in front (in this case, to the left) of the lens, and the correct choice is (c).

6. For a divergent lens, $f < 0$, and because the object is real, $p > 0$. The thin lens equation, $1/p + 1/q = 1/f$, then gives

$$q = \frac{pf}{p-f} = \frac{(10.0 \text{ cm})(-16.0 \text{ cm})}{10.0 \text{ cm} - (-16.0 \text{ cm})} = -6.15 \text{ cm}$$

Since $q < 0$, the image is in front (in this case, to the left) of the lens, and the correct choice is (b).
7. A concave mirror forms inverted, real images of real objects located outside the focal point \((p > f)\), and upright, magnified, virtual images of real objects located inside the focal point \((p < f)\) of the mirror. Virtual images, located behind the mirror, have negative image distances by the sign convention of Table 23.1. Choices (d) and (e) are true statements and all other choices are false.

8. With a real object in front of a convex mirror, the image is always upright, virtual, diminished in size, and located between the mirror and the focal point. Thus, of the available choices, only choice (d) is a true statement.

9. A convergent lens forms inverted, real images of real objects located outside the focal point \((p > f)\). When \(p > 2f\), the real image is diminished in size, and the image is enlarged if \(2f > p > f\). For real objects located inside the focal point \((p < f)\) of the convergent lens, the image is upright, virtual, and enlarged. In the given case, \(p > 2f\), so the image is real, inverted, and diminished in size. Choice (c) is the correct answer.

10. For a real object \((p > 0)\) and a diverging lens \((f < 0)\), the image distance given by the thin lens equation is

\[
q = \frac{pf}{p-f} = \frac{p|f|}{|p|-|f|} = \frac{|p||f|}{|p|+|f|} < 0
\]

and the magnification is

\[
M = -\frac{q}{p} = -\frac{|f|}{|p|} > 0
\]

Thus, the image is always virtual and upright, meaning that choice (b) is a true statement while all other choices are false.

ANSWERS TO EVEN NUMBERED CONCEPTUAL QUESTIONS

2. Chromatic aberration is produced when light passes through a material, as it does when passing through the glass of a lens. A mirror, silvered on its front surface never has light passing through it, so this aberration cannot occur. This is only one of many reasons why large telescopes use mirrors rather than lenses for their primary optical elements.

4. All objects beneath the stream appear to be closer to the surface than they really are because of refraction. Thus, the pebbles on the bottom of the stream appear to be close to the surface of a shallow stream.

6. An effect similar to a mirage is produced except the “mirage” is seen hovering in the air. Ghost lighthouses in the sky have been seen over bodies of water by this effect.

8. Actually no physics is involved here. The design is chosen so your eyelashes will not brush against the glass as you blink. A reason involving a little physics is that with this design, when you direct your gaze near the outer circumference of the lens you receive a ray that has passed through glass with more nearly parallel surfaces of entry and exit. Then the lens minimally distorts the direction to the object you are looking at.

10. Both words are inverted. However, OXIDE looks the same right side up and upside down. LEAD does not.
12. (a) No. The screen is needed to reflect the light toward your eye.
 (b) Yes. The light is traveling toward your eye and diverging away from the position of the image, the same as if the object was located at that position.

14. (d) The entire image would appear because any portion of the lens can form the image. The image would be dimmer because the card reduces the light intensity on the screen by 50%.

PROBLEM SOLUTIONS

23.1 If you stand 40 cm in front of the mirror, the time required for light scattered from your face to travel to the mirror and back to your eye is
\[\Delta t = \frac{2d}{c} = \frac{2(0.40 \text{ m})}{3.0 \times 10^8 \text{ m/s}} = 2.7 \times 10^{-9} \text{ s} \]
Thus, the image you observe shows you \(\sim 10^{-9} \text{ s younger} \) than your current age.

23.2 (a) With the palm located 1.0 m in front of the nearest mirror, that mirror forms an image, \(I_{p1} \), of the palm located 1.0 m behind the nearest mirror.
(b) The farthest mirror forms an image, \(I_{b1} \), of the back of the hand located 2.0 m behind this mirror and 5.0 m in front of the nearest mirror. This image serves as an object for the nearest mirror, which then forms an image, \(I_{b2} \), of the back of the hand located 5.0 m behind the nearest mirror.
(c) The image \(I_{p1} \) (see part a) serves as an object located 4.0 m in front of the farthest mirror, which forms an image \(I_{p2} \) of the palm, located 4.0 m behind that mirror and 7.0 m in front of the nearest mirror. This image then serves as an object for the nearest mirror, which forms an image \(I_{p3} \) of the palm, located 7.0 m behind the nearest mirror.
(d) Since all images are located behind the mirror, all are virtual images.

23.3 (1) The first image in the left-hand mirror is 5.00 ft behind the mirror, or 10.0 ft from the person.
(2) The first image in the right-hand mirror serves as an object for the left-hand mirror. It is located 10.0 ft behind the right-hand mirror, which is 25.0 ft from the left-hand mirror. Thus, the second image in the left-hand mirror is 25.0 ft behind the mirror, or 30.0 ft from the person.
(3) The first image in the left-hand mirror serves as an object for the right-hand mirror. It is located 20.0 ft in front of the right-hand mirror and forms an image 20.0 ft behind that mirror. This image then serves as an object for the left-hand mirror. The distance from this object to the left-hand mirror is 35.0 ft. Thus, the third image in the left-hand mirror is 35.0 ft behind the mirror, or 40.0 ft from the person.
23.4 The virtual image is as far behind the mirror as the choir is in front of the mirror. Thus, the image is 5.30 m behind the mirror.

The image of the choir is

\[0.800 \text{ m} + 5.30 \text{ m} = 6.10 \text{ m} \]

from the organist. Using similar triangles
gives

\[\frac{h'}{0.600 \text{ m}} = \frac{6.10 \text{ m}}{0.800 \text{ m}} \]

or \[h' = (0.600 \text{ m}) \left(\frac{6.10 \text{ m}}{0.800 \text{ m}} \right) = 4.58 \text{ m} \]

23.5 In the figure at the right, \(\theta' = \theta \) since they are vertical angles formed by two intersecting straight lines. Their complementary angles are also equal or \(\alpha' = \alpha \). The right triangles \(PQR \) and \(P'QR \) have the common side \(QR \) and are then congruent by the angle-side-angle theorem. Thus, the corresponding sides \(PQ \) and \(P'Q \) are equal, or the image is as far behind the mirror as the object is in front of it.

23.6 (a) Since the object is in front of the mirror, \(p > 0 \). With the image behind the mirror, \(q < 0 \).

The mirror equation gives the radius of curvature as

\[\frac{2}{R} = \frac{1}{p} + \frac{1}{q} = \frac{1}{1.00 \text{ cm}} \frac{1}{10.0 \text{ cm}} = \frac{10 - 1}{10.0 \text{ cm}} \]

or \[R = 2 \left(\frac{10.0 \text{ cm}}{9} \right) = 2.22 \text{ cm} \]

(b) The magnification is \[M = -\frac{q}{p} = -\frac{-10.0 \text{ cm}}{1.00 \text{ cm}} = +10.0 \]

23.7 (a) Since the mirror is concave, \(R > 0 \). Because the object is located in front of the mirror, \(p > 0 \). The mirror equation, \(1/p + 1/q = 2/R \), then gives the image distance as

\[q = \frac{pR}{2p - R} = \frac{(40.0 \text{ cm})(20.0 \text{ cm})}{2(40.0 \text{ cm}) - 20.0 \text{ cm}} = +13.3 \text{ cm} \]

Since \(q > 0 \), the image is located **13.3 cm in front of the mirror**.
(b) \[M = -\frac{q}{p} = -\frac{13.3 \text{ cm}}{40.0 \text{ cm}} = -0.333 \text{ cm} \]

Because \(q > 0 \), the image is real, and since \(M < 0 \), the image is inverted.

23.8 The lateral magnification is given by \(M = -\frac{q}{p} \). Therefore, the image distance is \(q = -Mp = -(0.0130)(30.0 \text{ cm}) = -0.390 \text{ cm} \).

The mirror equation:
\[\frac{2}{R} = \frac{1}{p} + \frac{1}{q} \quad \text{or} \quad R = \frac{2pq}{p + q} \]
gives \(R = \frac{2(-0.390 \text{ cm})(30.0 \text{ cm})}{30.0 \text{ cm} - 0.390 \text{ cm}} = -0.790 \text{ cm} \)

The negative sign tells us that the surface is convex. The magnitude of the radius of curvature of the cornea is \(|R| = 0.790 \text{ cm} = 7.90 \text{ mm} \).

23.9 (a) For a convex mirror, the focal length is \(f = R/2 < 0 \), and with the object in front of the mirror, \(p > 0 \). The mirror equation, \(\frac{1}{p} + \frac{1}{q} = \frac{2}{R} = \frac{1}{f} \), then gives
\[q = \frac{pf}{p-f} = \frac{(30.0 \text{ cm})(-10.0 \text{ cm})}{30.0 \text{ cm} - (-10.0 \text{ cm})} = -7.50 \text{ cm} \]

With \(q < 0 \), the image is located 7.50 cm behind the mirror.

(b) The magnification is
\[M = \frac{h'}{h} = -\frac{q}{p} = -\frac{-7.50 \text{ cm}}{30.0 \text{ cm}} = +0.250 \]

Since \(q < 0 \) and \(M > 0 \), the image is virtual and upright. Its height is
\[h' = Mh = (0.250)(2.0 \text{ cm}) = 0.50 \text{ cm} \]

23.10 The image was initially upright but became inverted when Dina was more than 30 cm from the mirror. From this information, we know that the mirror must be concave because a convex mirror will form only upright, virtual images of real objects.

When the object is located at the focal point of a concave mirror, the rays leaving the mirror are parallel, and no image is formed. Since Dina observed that her image disappeared when she was about 30 cm from the mirror, we know that the focal length must be \(f = 30 \text{ cm} \).

Also, for spherical mirrors, \(R = 2f \). Thus, the radius of curvature of this concave mirror must be \(R = 60 \text{ cm} \).
The magnified, virtual images formed by a concave mirror are upright, so \(M > 0 \).

Thus, \[M = -\frac{q}{p} = \frac{h'}{h} = \frac{5.00 \text{ cm}}{2.00 \text{ cm}} = +2.50, \] giving
\[q = -2.50 \cdot p = -2.50(3.00 \text{ cm}) = -7.50 \text{ cm} \]

The mirror equation then gives
\[\frac{1}{f} = \frac{1}{R} = \frac{1}{p} + \frac{1}{q} = \frac{1}{3.00 \text{ cm}} - \frac{1}{7.50 \text{ cm}} = \frac{2.50 - 1}{7.50 \text{ cm}} \]
\[\text{or} \quad f = \frac{7.50 \text{ cm} \cdot 1.50}{2.50 - 1} = \frac{5.00 \text{ cm}}{2} \]

Realize that the magnitude of the radius of curvature, \(|R| \), is the same for both sides of the hubcap. For the convex side, \(R = -|R| \); and for the concave side, \(R = +|R| \). The object distance \(p \) is positive (real object) and has the same value in both cases. Also, we write the virtual image distance as \(q = -|q| \) in each case. The mirror equation then gives:

For the convex side,
\[\frac{1}{|q|} = \frac{2}{|R|} \cdot \frac{1}{p} \quad \text{or} \quad |q| = \frac{|R| \cdot p}{|R| + 2p} \quad [1] \]

For the concave side,
\[\frac{1}{|q|} = \frac{2}{|R|} \cdot \frac{1}{p} \quad \text{or} \quad |q| = \frac{|R| \cdot p}{|R| - 2p} \quad [2] \]

Comparing Equations [1] and [2], we observe that the smaller magnitude image distance, \(|q| = 10.0 \text{ cm} \), occurs with the convex side of the mirror. Hence, we have
\[\frac{1}{-10.0 \text{ cm}} = \frac{2}{-|R|} \cdot \frac{1}{p} \quad [3] \]
and for the concave side, \(|q| = 30.0 \text{ cm} \), gives
\[\frac{1}{-30.0 \text{ cm}} = \frac{2}{|R|} \cdot \frac{1}{p} \quad [4] \]

\[\frac{2}{p} = \frac{3 + 1}{30.0 \text{ cm}} \quad \text{or} \quad p = \frac{15.0 \text{ cm}}{2} \]

\[\frac{4}{-30.0 \text{ cm}} = \frac{3 - 1}{30.0 \text{ cm}} \quad \text{or} \quad |R| = 60.0 \text{ cm} \]

The image is upright, so \(M > 0 \), and we have
\[M = -\frac{q}{p} = +2.00, \quad \text{or} \quad q = +2.00 \cdot p = -2.00(25 \text{ cm}) = -50 \text{ cm} \]

The radius of curvature is then found to be
\[\frac{2}{R} = \frac{1}{p} + \frac{1}{q} = \frac{1}{25 \text{ cm}} - \frac{1}{50 \text{ cm}} = \frac{2 - 1}{50 \text{ cm}}, \quad \text{or} \quad R = 2 \left(\frac{0.50 \text{ m}}{+1} \right) = 1.0 \text{ m} \]
23.14 (a) Your ray diagram should be carefully drawn to scale and look like the diagram given below:

(b) From the mirror equation with $p = +10.0 \text{ cm}$ and $f = -15.0 \text{ cm}$, the image distance is

$$q = \frac{pf}{p-f} = \frac{(10.0 \text{ cm})(-15.0 \text{ cm})}{10.0 \text{ cm} - (-15.0 \text{ cm})} = -150 \text{ cm}$$

and the magnification is $M = -q/p = -(-6.00 \text{ cm})/(10.0 \text{ cm}) = 0.600 > 0$. Thus, you should find that the image is **upright, located 6.00 cm behind the mirror, six-tenths the size of the object**.

23.15 The focal length of the mirror may be found from the given object and image distances as $1/f = 1/p + 1/q$, or

$$f = \frac{pq}{p+q} = \frac{(152 \text{ cm})(18.0 \text{ cm})}{152 \text{ cm} + 18.0 \text{ cm}} = +16.1 \text{ cm}$$

For an upright image twice the size of the object, the magnification is $M = -q/p = +2.00$, giving $q = -2.00 p$

Then, using the mirror equation again, $1/p + 1/q = 1/f$ becomes

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{2.00} \Rightarrow \frac{1}{p} = \frac{2}{2.00} - \frac{1}{f}$$

or $\frac{p}{f} = \frac{16.1 \text{ cm}}{2.00} = 8.05 \text{ cm}$

23.16 (a) The mirror is convex, so $f < 0$, and we have $f = -|f| = -8.0 \text{ cm}$. The image is virtual, so $q < 0$, or $q = -|q|$. Since we also know that $|q| = p/3$, the mirror equation gives

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{3} \Rightarrow \frac{1}{p} = \frac{1}{f} \quad \text{or} \quad \frac{2}{p} = \frac{1}{-8.0 \text{ cm}}$$

This means that we have **a real object located 16 cm in front of the mirror**.

(b) The magnification is $M = -q/p = +|q|/p = +1/3$. Thus, the image is **upright** and one-third the size of the object.
23.17 (a) We know that the object distance is \(p = +10.0 \) cm. Also, \(M > 0 \) since the image is upright, and \(|M| = 1/2 \) since the image is half the size of the object. Thus, we have

\[
M = \frac{-q}{p} = \frac{-q}{10.0 \text{ cm}} = \frac{1}{2} \quad \text{or} \quad q = -5.00 \text{ cm}
\]

and the image is seen to be located 5.00 cm behind the mirror.

(b) From the mirror equation, \(1/p + 1/q = 1/f \), we find the focal length to be

\[
f = \frac{pq}{p + q} = \frac{(10.0 \text{ cm})(-5.00 \text{ cm})}{10.0 \text{ cm} + (-5.00 \text{ cm})} = -10.0 \text{ cm}
\]

23.18 (a) Since the mirror is concave, \(R > 0 \), giving \(R = +24 \) cm and \(f = R/2 = +12 \) cm. Because the image is upright \((M > 0) \) and three times the size of the object \((|M| = 3) \), we have

\[
M = -\frac{q}{p} = +3 \quad \text{and} \quad q = -3p
\]

The mirror equation then gives

\[
\frac{1}{p} - \frac{1}{3p} = \frac{2}{3p} = \frac{1}{12 \text{ cm}} \quad \text{or} \quad p = +8.0 \text{ cm}
\]

(b) The needed ray diagram, with the object 8.0 cm in front of the mirror, is shown below:

From a carefully drawn scale drawing, you should find that the image is upright, virtual, 24 cm behind the mirror, and three times the size of the object.

23.19 (a) An image formed on a screen is a real image. Thus, the mirror must be \text{concave} since, of mirrors, only concave mirrors can form real images of real objects.

(b) The magnified, real images formed by concave mirrors are inverted, so \(M < 0 \) and

\[
M = -\frac{q}{p} = -5, \quad \text{or} \quad p = \frac{q}{5} = \frac{5.0 \text{ m}}{5} = 1.0 \text{ m}
\]

The object should be \(1.0 \) m in front of the mirror.

(a — revisited) The focal length of the mirror is

\[
\frac{1}{f} = \frac{1}{1.0 \text{ m}} + \frac{1}{5.0 \text{ m}} = \frac{6}{5.0 \text{ m}}, \quad \text{or} \quad f = \frac{5.0 \text{ m}}{6} = 0.83 \text{ m}
\]
23.20 (a) From \(\frac{1}{p} + \frac{1}{q} = \frac{2}{R} \), we find \(q = \frac{R}{2p - R} = (1.00 \text{ m})p \).

The table gives the image position at a few critical points in the motion. Between \(p = 3.00 \text{ m} \) and \(p = 0.500 \text{ m} \), the real image moves from 0.600 m to positive infinity. From \(p = 0.500 \text{ cm} \) to \(p = 0 \), the virtual image moves from negative infinity to 0.

Note the “jump” in the image position as the ball passes through the focal point of the mirror.

(b) The ball and its image coincide when \(p = 0 \) and when

\[
\frac{1}{p} + \frac{1}{p} = \frac{2}{p} = \frac{2}{R}, \quad \text{or} \quad p = R = 1.00 \text{ m}
\]

From \(\Delta v = v_0 + \frac{1}{2}a\Delta t \), with \(v_0 = 0 \), the times for the ball to fall from \(p = 3.00 \text{ m} \) to these positions are found to be

\[
t = \sqrt{\frac{2(\Delta v)}{a_y}} = \sqrt{\frac{2(-2.00 \text{ m})}{-9.80 \text{ m/s}^2}} = 0.639 \text{ s}
\]

\[
t = \sqrt{\frac{2(-3.00 \text{ m})}{-9.80 \text{ m/s}^2}} = 0.782 \text{ s}
\]

23.21 From \(\frac{n_2}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R} \), with \(R \to \infty \), the image position is found to be

\[
q = -\frac{n_2}{n_1} \frac{p}{p} = -\left(\frac{1.00}{1.309} \right) (50.0 \text{ cm}) = -38.2 \text{ cm}
\]

or the virtual image is 38.2 cm below the upper surface of the ice.

23.22 The center of curvature of a convex surface is located behind the surface, and the sign convention for refracting surfaces (Table 23.2 in the textbook) states that \(R > 0 \), giving \(R = +8.00 \text{ cm} \). The object is in front of the surface \((p > 0) \) and in air \((n_1 = 1.00) \), while the second medium is glass \((n_2 = 1.50) \). Thus, \(\frac{n_2}{p} + \frac{n_2}{q} = (n_2 - n_1)/R \) becomes

\[
\frac{1.00}{p} + \frac{1.50}{q} = \frac{1.50 - 1.00}{8.00 \text{ cm}} \quad \text{and reduces to} \quad q = \frac{(24.0 \text{ cm})p}{p - 16.0 \text{ cm}}
\]

(a) If \(p = 20.0 \text{ cm} \), \(q = \frac{(24.0 \text{ cm})(20.0 \text{ cm})}{20.0 \text{ cm} - 16.0 \text{ cm}} = +120 \text{ cm}
\]

(b) If \(p = 8.00 \text{ cm} \), \(q = \frac{(24.0 \text{ cm})(8.00 \text{ cm})}{8.00 \text{ cm} - 16.0 \text{ cm}} = -24.0 \text{ cm}
\]

continued on next page
(c) If \(p = 4.00 \text{ cm}, \)
\[q = \frac{(24.0 \text{ cm})(4.00 \text{ cm})}{4.00 \text{ cm} - 16.0 \text{ cm}} = -8.00 \text{ cm} \]

(d) If \(p = 2.00 \text{ cm}, \)
\[q = \frac{(24.0 \text{ cm})(2.00 \text{ cm})}{2.00 \text{ cm} - 16.0 \text{ cm}} = -3.43 \text{ cm} \]

23.23 Since the center of curvature of the surface is on the side the light comes from, \(R < 0 \), giving \(R = -4.0 \text{ cm} \). Then, \(\frac{n_p}{p} + \frac{n_q}{q} = \frac{n_2 - n_1}{R} \), becomes

\[\frac{1.00}{q} = \frac{1.00 - 1.50}{-4.0 \text{ cm}} = \frac{1.50}{4.0 \text{ cm}}, \text{ or } q = -4.0 \text{ cm} \]

Thus, the magnification \(M = \frac{h'}{h} = -\left(\frac{n_1}{n_2} \right) \frac{q}{p} \) gives

\[h' = -\left(\frac{n_q}{n_p} \right) h = -\frac{1.50}{1.00}(4.0 \text{ cm}) \left(2.5 \text{ mm} \right) = 3.8 \text{ mm} \]

23.24 For a plane refracting surface \((R \to \infty) \)

\[\frac{n_p}{p} + \frac{n_q}{q} = \frac{n_2 - n_1}{R} \text{ becomes } q = -\frac{n_2}{n_1} p \]

(a) When the pool is full, \(p = 2.00 \text{ m} \) and

\[q = -\left(\frac{1.00}{1.333} \right)(2.00 \text{ m}) = -1.50 \text{ m} \]

or the pool appears to be \(1.50 \text{ m} \) deep.

(b) If the pool is half filled, then \(p = 1.00 \text{ m} \) and \(q = -0.750 \text{ m} \). Thus, the bottom of the pool appears to be \(0.75 \text{ m} \) below the water surface or \(1.75 \text{ m} \) below ground level.

23.25 As parallel rays from the Sun (object distance, \(p \to \infty \)) enter the transparent sphere from air \((n_1 = 1.00) \), the center of curvature of the surface is on the side the light is going toward (back side). Thus, \(R > 0 \). It is observed that a real image is formed on the surface opposite the Sun, giving the image distance as \(q = +2R \).

Then \(\frac{n_p}{p} + \frac{n_q}{q} = \frac{n_2 - n_1}{R} \) becomes

\[0 + \frac{n}{2R} = \frac{n - 1.00}{R} \]

which reduces to \(n = 2n - 2.00 \) and gives \(n = 2.00 \).
23.26 Light scattered from the bottom of the plate undergoes two refractions, once at the top of the plate and once at the top of the water. All surfaces are planes \((R \rightarrow \infty)\), so the image distance for each refraction is \(q = -(n_z/n_i)p\). At the top of the plate,

\[
q_{ib} = -\left(\frac{n_{air}}{n_{water}}\right)p_{ib} = -\left(\frac{1.333}{1.66}\right)(8.00 \text{ cm}) = -6.42 \text{ cm}
\]

or the first image is 6.42 cm below the top of the plate. This image serves as a real object for the refraction at the top of the water, so the final image of the bottom of the plate is formed at

\[
q_{ib} = -\left(\frac{n_{air}}{n_{water}}\right)p_{ib} = -\left(\frac{n_{air}}{n_{water}}\right)(12.0 \text{ cm} + |q_{ib}|)
\]

\[
= -\left(\frac{1.00}{1.333}\right)(18.4 \text{ cm}) = -13.8 \text{ cm or } 13.8 \text{ cm below the water surface.}
\]

Now, consider light scattered from the top of the plate. It undergoes a single refraction, at the top of the water. This refraction forms an image of the top of the plate at

\[
q_e = -\left(\frac{n_{air}}{n_{water}}\right)p_e = -\left(\frac{1.00}{1.333}\right)(12.0 \text{ cm}) = -9.00 \text{ cm}
\]

or 9.00 cm below the water surface.

The apparent thickness of the plate is then

\[
\Delta y = |q_{ib}| - |q_e| = 13.8 \text{ cm} - 9.00 \text{ cm} = 4.8 \text{ cm}
\]

23.27 In the drawing at the right, object \(O\) (the jellyfish) is located distance \(p\) in front of a plane water-glass interface. Refraction at that interface produces a virtual image \(I'\) at distance \(|q'x|\) in front it. This image serves as the object for refraction at the glass-air interface. This object is located distance \(p' = |q'| + t\) in front of the second interface, where \(t\) is the thickness of the layer of glass. Refraction at the glass-air interface produces a final virtual image, \(I\), located distance \(|q''x|\) in front of this interface.

From \(n_z/p + n_z/q = (n_z - n_i)/R\) with \(R \rightarrow \infty\) for a plane, the relation between the object and image distances for refraction at a flat surface is \(q = -(n_z/n_i)p\). Thus, the image distance for the refraction at the water-glass interface is \(q' = -(n_z/n_i)p\). This gives an object distance for the refraction at the glass-air interface of \(p' = (n_z/n_w)p + t\) and a final image position (measured from the glass-air interface)

\[
q = -\frac{n_z}{n_w}p' = -\frac{n_z}{n_w}\left[\left(\frac{n_z}{n_w}\right)p + t\right] = -\left[\left(\frac{n_z}{n_w}\right)p + \left(\frac{n_z}{n_w}\right)t\right]
\]

continued on next page
(a) If the jellyfish is located 1.00 m (or 100 cm) in front of a 6.00 cm thick pane of glass, then
\[p = +100 \text{ cm} \text{ and } t = 6.00 \text{ cm} \] and the position of the final image relative to the glass-air interface is
\[q = -\left[\frac{1.00}{1.333} (100 \text{ cm}) + \frac{1.00}{1.50} (6.00 \text{ cm}) \right] = -79.0 \text{ cm} = -0.790 \text{ m} \]

(b) If the thickness of the glass is negligible \((t \rightarrow 0)\), the distance of the final image from the glass-air interface is
\[q = -\frac{n_1}{n_2} \left[\frac{n_2}{n_1} p + 0 \right] = -\left(\frac{n_2}{n_1} \right) p = -\left(\frac{1.00}{1.333} \right) (100 \text{ cm}) = -75.0 \text{ cm} = -0.750 \text{ m} \]
so we see that the 6.00 cm thickness of the glass in part (a) made a 4.00 cm difference in the apparent position of the jellyfish.

(c) The thicker the glass, the greater the distance between the final image and the outer surface of the glass.

23.28 The wall of the aquarium (assumed to be of negligible thickness) is a plane \((R \rightarrow \infty)\) refracting surface separating water \((n_1 = 1.333)\) and air \((n_2 = 1.00)\). Thus, \(\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R}\) gives the image position as
\[q = -\left(\frac{n_2}{n_1} \right) p = -\left(\frac{1.00}{1.333} \right) (100 \text{ cm}) \]
When the object position changes by \(\Delta p\), the change in the image position is \(\Delta q = -\frac{\Delta p}{1.333}\). The apparent speed of the fish is then given by
\[v_{\text{image}} = \frac{\Delta q}{\Delta t} = \frac{2.00 \text{ cm/s}}{1.333} = 1.50 \text{ cm/s} \]

23.29 With \(R_1 = +2.00 \text{ cm}\) and \(R_2 = +2.50 \text{ cm}\), the lens maker’s equation gives the focal length as
\[\frac{1}{f} = (n - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = (1.50 - 1) \left(\frac{1}{2.00 \text{ cm}} - \frac{1}{2.50 \text{ cm}} \right) = 0.050 \text{ cm}^{-1} \]
or \[f = \frac{1}{0.050 \text{ cm}^{-1}} = 20.0 \text{ cm} \]

23.30 The lens maker’s equation is used to compute the focal length in each case.

(a) \[\frac{1}{f} = (n - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right] \]
\[f = \left(1.44 - 1 \right) \left[\frac{1}{12.0 \text{ cm}} - \frac{1}{(-18.0 \text{ cm})} \right] \]
\[f = 16.4 \text{ cm} \]

(b) \[\frac{1}{f} = (1.44 - 1) \left[\frac{1}{18.0 \text{ cm}} - \frac{1}{(-12.0 \text{ cm})} \right] \]
\[f = 16.4 \text{ cm} \]
23.31 The focal length of a converging lens is positive, so \(f = +10.0 \) cm. The thin lens equation then yields a focal length of

\[
q = \frac{pf}{p - f} = \frac{p(10.0 \text{ cm})}{p - 10.0 \text{ cm}}
\]

(a) When \(p = +20.0 \) cm,

\[
q = \frac{(20.0 \text{ cm})(10.0 \text{ cm})}{20.0 \text{ cm} - 10.0 \text{ cm}} = +20.0 \text{ cm}
\]

and

\[
M = -\frac{q}{p} = -\frac{20.0 \text{ cm}}{20.0 \text{ cm}} = -1.00
\]

so the image is located 20.0 cm beyond the lens, is real \((q > 0)\), is inverted \((M < 0)\), and is the same size as the object \([|M| = 1.00]\).

(b) When \(p = f = +10.0 \) cm, the object is at the focal point and no image is formed. Instead, parallel rays emerge from the lens.

(c) When \(p = 5.00 \) cm,

\[
q = \frac{(5.00 \text{ cm})(10.0 \text{ cm})}{5.00 \text{ cm} - 10.0 \text{ cm}} = -10.0 \text{ cm}
\]

and

\[
M = -\frac{q}{p} = -\frac{-10.0 \text{ cm}}{5.00 \text{ cm}} = +2.00
\]

so the image is located 10.0 cm in front of the lens, is virtual \((q < 0)\), is upright \((M > 0)\), and is twice the size of the object \([|M| = 2.00]\).

23.32 (a) and (b) Your scale drawings should look similar to those given below:

A carefully drawn-to-scale version of Figure (a) should yield a real, inverted image that is located 20 cm in back of the lens and the same size as the object. Similarly, a carefully drawn-to-scale version of Figure (b) should yield an upright, virtual image located 10 cm in front of the lens and twice the size of the object.

(c) The accuracy of the graph depends on how accurately the ray diagrams are drawn. Sources of uncertainty: a parallel line from the tip of the object may not be exactly parallel; the focal points may not be exactly located; lines through the focal points may not be exactly the correct slope; the location of the intersection of two lines cannot be determined with complete accuracy.
23.33 From the thin lens equation, \[\frac{1}{p} + \frac{1}{q} = \frac{1}{f}, \] the image distance is found to be

\[q = \frac{fp}{p-f} = \frac{(20.0 \text{ cm})p}{p+(20.0 \text{ cm})} = \frac{(20.0 \text{ cm})p}{p+20.0 \text{ cm}} \]

(a) If \(p = 40.0 \text{ cm}, \) then \(q = -13.3 \text{ cm} \) and \(M = -\frac{q}{p} = -\frac{(-13.3 \text{ cm})}{40.0 \text{ cm}} = +1/3 \)

The image is [virtual, upright, and 13.3 cm in front of the lens].

(b) If \(p = 20.0 \text{ cm}, \) then \(q = -10.0 \text{ cm} \) and

\[M = -\frac{q}{p} = -\frac{(-10.0 \text{ cm})}{20.0 \text{ cm}} = +1/2 \]

The image is [virtual, upright, and 10.0 cm in front of the lens].

(c) When \(p = 10.0 \text{ cm}, \) \(q = -6.67 \text{ cm} \) and \(M = -\frac{q}{p} = -\frac{(-6.67 \text{ cm})}{10.0 \text{ cm}} = +2/3 \).

The image is [virtual, upright, and 6.67 cm in front of the lens].

23.34 (a) and (b). Your scale drawings should look similar to those given below:

A carefully drawn-to-scale version of Figure (a) should yield an upright, virtual image located 13.3 cm in front of the lens and one-third the size of the object. Similarly, a carefully drawn-to-scale version of Figure (b) should yield an upright, virtual image located 6.7 cm in front of the lens and two-thirds the size of the object.

(c) The results of the graphical solution are consistent with the algebraic answers found in Problem 23.33, allowing for small deviances due to uncertainties in measurement. Graphical answers may vary, depending on the size of the graph paper and accuracy of the drawing.
23.35 (a) The real image case is shown in the ray diagram. Notice that \(p + q = 12.9 \text{ cm} \), or \(q = 12.9 \text{ cm} - p \). The thin lens equation, with \(f = 2.44 \text{ cm} \), then gives

\[
\frac{1}{p} + \frac{1}{12.9 \text{ cm} - p} = \frac{1}{2.44 \text{ cm}}
\]

or \(p^2 - (12.9 \text{ cm}) p + 31.5 \text{ cm}^2 = 0 \)

Using the quadratic formula to solve gives

\[
p = 9.63 \text{ cm} \quad \text{or} \quad p = 3.27 \text{ cm}
\]

Both are valid solutions for the real image case.

(b) The virtual image case is shown in the second diagram. Note that in this case, \(q - p = -(12.9 \text{ cm}) \), so the thin lens equation gives

\[
\frac{1}{p} - \frac{1}{12.9 \text{ cm} + p} = \frac{1}{2.44 \text{ cm}}
\]

or \(p^2 + (12.9 \text{ cm}) p - 31.5 \text{ cm}^2 = 0 \)

The quadratic formula then gives

\[
p = 2.10 \text{ cm} \quad \text{or} \quad p = -15.0 \text{ cm}.
\]

Since the object is real, the negative solution must be rejected, leaving \(p = 2.10 \text{ cm} \).

23.36 We must first realize that we are looking at an upright, magnified, virtual image. Thus, we have a real object located between a converging lens and its front-side focal point, so \(q < 0 \), \(p > 0 \), and \(f > 0 \).

The magnification is \(M = -\frac{d'}{d} = +2 \), giving \(q = -2 p \). Then, from the thin lens equation,

\[
\frac{1}{p} - \frac{1}{2 p} = -\frac{1}{2 f} \quad \text{or} \quad f = 2 p = 2(2.84 \text{ cm}) = 5.68 \text{ cm}
\]

23.37 It is desired to form a magnified, real image on the screen using a single thin lens. To do this, a converging lens must be used and the image will be inverted. The magnification then gives

\[
M = \frac{h'}{h} = -\frac{1.80 \text{ m}}{24.0 \times 10^{-3} \text{ m}} = -\frac{q}{p}, \quad \text{or} \quad q = 75.0 p
\]

Also, we know that \(p + q = 3.00 \text{ m} \). Therefore, \(p + 75.0 p = 3.00 \text{ m} \), giving

\[
p = \frac{3.00 \text{ m}}{76.0} = 3.95 \times 10^{-2} \text{ m} = 39.5 \text{ mm}
\]

continued on next page
(a) The thin lens equation then gives \(\frac{1}{p} + \frac{1}{75.0 \, p} = \frac{76.0}{75.0 \, p} = \frac{1}{f} \)

or \(f = \frac{75.0}{76.0} \) \(p = \frac{75.0}{76.0} \) (39.5 mm) = \(39.0 \, \text{mm} \)

23.38 To have a magnification of \(M = -q/p = +3.00 \), it is necessary that \(q = -3.00 \, p \). The thin lens equation, with \(f = +18.0 \, \text{cm} \) for the convergent convex lens, gives the required object distance as

\[
\frac{1}{p} - \frac{1}{3.00 \, p} = \frac{2}{3.00} = \frac{1}{18.0 \, \text{cm}} \quad \text{or} \quad p = \frac{2(18.0 \, \text{cm})}{3.00} = 12.0 \, \text{cm}
\]

23.39 Since the light rays incident to the first lens are parallel, \(p_1 = \infty \) and the thin lens equation gives \(q_1 = f_1 = -10.0 \, \text{cm} \).

The virtual image formed by the first lens serves as the object for the second lens, so \(p_2 = 30.0 \, \text{cm} + |q_1| = 40.0 \, \text{cm} \). If the light rays leaving the second lens are parallel, then \(q_2 = \infty \) and the thin lens equation gives \(f_2 = p_2 = 40.0 \, \text{cm} \).

23.40 (a) Solving the thin lens equation for the image distance \(q \) gives

\[
\frac{1}{q} = \frac{1}{f} - \frac{1}{p} = \frac{p-f}{p \, f} \quad \text{or} \quad q = \frac{pf}{p-f}
\]

(b) For a real object, \(p > 0 \) and \(p = |p| \). Also, for a diverging lens, \(f < 0 \) and \(f = |-f| \). The result of part (a) then becomes

\[
q = \frac{|p|(-|f|)}{|p| - (-|f|)} = \frac{|p||f|}{|p| + |f|}
\]

Thus, we see that \(q < 0 \) for all numeric values of \(|p| \) and \(|f| \). Since negative image distances mean virtual images, we conclude that a diverging lens will always form virtual images of real objects.

(c) For a real object, \(p > 0 \) and \(p = |p| \). Also, for a converging lens, \(f > 0 \) and \(f = |f| \). The result of part (a) then becomes

\[
q = \frac{|p||f|}{|p| - |f|} > 0 \quad \text{if} \quad |p| - |f| > 0
\]

Since \(q \) must be positive for a real image, we see that a converging lens will form real images of real objects only when \(|p| > |f| \) (or \(p > f \)) since both \(p \) and \(f \) are positive in this situation.
23.41 The thin lens equation gives the image position for the first lens as
\[q_1 = \frac{p_1 f_1}{p_1 - f_1} = \frac{(30.0 \text{ cm})(15.0 \text{ cm})}{30.0 \text{ cm} - 15.0 \text{ cm}} = +30.0 \text{ cm} \]
and the magnification by this lens is \[M_1 = -\frac{q_1}{p_1} = -\frac{30.0 \text{ cm}}{30.0 \text{ cm}} = -1.00. \]
The real image formed by the first lens serves as the object for the second lens, so \[p_2 = 40.0 \text{ cm} - q_1 = +10.0 \text{ cm}. \] Then, the thin lens equation gives
\[q_2 = \frac{p_2 f_2}{p_2 - f_2} = \frac{(10.0 \text{ cm})(15.0 \text{ cm})}{10.0 \text{ cm} - 15.0 \text{ cm}} = -30.0 \text{ cm} \]
and the magnification by the second lens is
\[M_2 = -\frac{q_2}{p_2} = -\frac{-30.0 \text{ cm}}{10.0 \text{ cm}} = +3.00 \]
Thus, the final, virtual image is located \(30.0 \text{ cm in front of the second lens}\) and the overall magnification is \[M = M_1 M_2 = (-1.00)(+3.00) = -3.00. \]

23.42 (a) With \(p_1 = +15.0 \text{ cm}\), the thin lens equation gives the position of the image formed by the first lens as
\[q_1 = \frac{p_1 f_1}{p_1 - f_1} = \frac{(15.0 \text{ cm})(10.0 \text{ cm})}{15.0 \text{ cm} - 10.0 \text{ cm}} = +30.0 \text{ cm} \]
This image serves as the object for the second lens, with an object distance of \[p_2 = 10.0 \text{ cm} - q_1 = 10.0 \text{ cm} - 30.0 \text{ cm} = -20.0 \text{ cm} \] (a virtual object). If the image formed by this lens is at the position of \(O_1\), the image distance is
\[q_2 = -(10.0 \text{ cm} + p_2) = -(10.0 \text{ cm} + 15.0 \text{ cm}) = -25.0 \text{ cm} \]
The thin lens equation then gives the focal length of the second lens as
\[f_2 = \frac{p_2 q_2}{p_2 + q_2} = \frac{(-20.0 \text{ cm})(-25.0 \text{ cm})}{-20.0 \text{ cm} - 25.0 \text{ cm}} = -11.1 \text{ cm} \]
(b) The overall magnification is
\[M = M_1 M_2 = \left(-\frac{q_1}{p_1}\right) \left(-\frac{q_2}{p_2}\right) = \left(-\frac{30.0 \text{ cm}}{15.0 \text{ cm}}\right) \left(-\frac{-25.0 \text{ cm}}{(-20.0 \text{ cm})}\right) = +2.50 \]
(c) Since \(q_2 < 0\), the final image is virtual; and since \(M > 0\), it is upright.
23.43 From the thin lens equation, \(q_1 = \frac{p_1 f_1}{p_1 - f_1} = \frac{(4.00 \text{ cm})(8.00 \text{ cm})}{4.00 \text{ cm} - 8.00 \text{ cm}} = -8.00 \text{ cm} \).

The magnification by the first lens is \(M_1 = \frac{-q_1}{p_1} = \frac{-8.00 \text{ cm}}{4.00 \text{ cm}} = +2.00 \).

The virtual image formed by the first lens is the object for the second lens, so \(p_2 = 6.00 \text{ cm} + |q_1| = +14.0 \text{ cm} \) and the thin lens equation gives
\[
q_2 = \frac{p_2 f_2}{p_2 - f_2} = \frac{(14.0 \text{ cm})(-16.0 \text{ cm})}{14.0 \text{ cm} - (-16.0 \text{ cm})} = -7.47 \text{ cm}
\]

The magnification by the second lens is \(M_2 = \frac{-q_2}{p_2} = \frac{-7.47 \text{ cm}}{14.0 \text{ cm}} = +0.533 \), so the overall magnification is \(M = M_1 M_2 = (+2.00)(+0.533) = +1.07 \).

The position of the final image is \(7.47 \text{ cm in front of the second lens} \) and its height is \(h' = M h = (+1.07)(1.00 \text{ cm}) = 1.07 \text{ cm} \).

Since \(M > 0 \), the final image is \textbf{upright} ; and since \(q_2 < 0 \), this image is \textbf{virtual}.

23.44 (a) We start with the final image and work backward. From Figure P23.44, observe that \(q_2 = -(50.0 \text{ cm} - 31.0 \text{ cm}) = -19.0 \text{ cm} \). The thin lens equation
\[
p_2 = \frac{q_2 f_2}{q_2 - f_2} = \frac{(-19.0 \text{ cm})(20.0 \text{ cm})}{-19.0 \text{ cm} - 20.0 \text{ cm}} = +9.74 \text{ cm}
\]

The image formed by the first lens serves as the object for the second lens and is located 9.74 cm in front of the second lens.

Thus, \(q_1 = 50.0 \text{ cm} - 9.74 \text{ cm} = 40.3 \text{ cm} \) and the thin lens equation gives
\[
p_1 = \frac{q_1 f_1}{q_1 - f_1} = \frac{(40.3 \text{ cm})(10.0 \text{ cm})}{40.3 \text{ cm} - 10.0 \text{ cm}} = +13.3 \text{ cm}
\]

The original object should be located \(13.3 \text{ cm} \) in front of the first lens.

(b) The overall magnification is
\[
M = M_1 M_2 = \left(-\frac{q_1}{p_1} \right) \left(-\frac{q_2}{p_2} \right) = \left(-\frac{40.3 \text{ cm}}{13.3 \text{ cm}} \right) \left(-\frac{(-19.0 \text{ cm})}{9.74 \text{ cm}} \right) = -5.91
\]

(c) Since \(M < 0 \), the final image is \textbf{inverted} ; and since \(q_2 < 0 \), it is \textbf{virtual}.
23.45 **Note:** Final answers to this problem are highly sensitive to round-off error. To avoid this, we retain extra digits in intermediate answers and round only the final answers to the correct number of significant figures.

Since the final image is to be real and in the film plane, \(q_1 = +d \).

Then, the thin lens equation gives

\[
p_2 = \frac{q_1 f_1}{q_1 - f_1} = \frac{d (13.0 \text{ cm})}{d - 13.0 \text{ cm}}.
\]

From Figure P23.45, observe that \(d < 12.0 \text{ cm} \). The above result then shows that \(p_2 < 0 \), so the object for the second lens will be a virtual object.

The object of the second lens \((L_2) \) is the image formed by the first lens \((L_1) \), so

\[
q_1 = (12.0 \text{ cm} - d) - p_2 = 12.0 \text{ cm} - d \left(1 + \frac{13.0 \text{ cm}}{d - 13.0 \text{ cm}}\right) = 12.0 \text{ cm} - \frac{d^2}{d - 13.0 \text{ cm}}
\]

If \(d = 5.00 \text{ cm} \), then \(q_1 = +15.125 \text{ cm} \); and when \(d = 10.0 \text{ cm} \), \(q_1 = +45.333 \text{ cm} \).

From the thin lens equation, \(p_1 = \frac{-q_1 f_1}{q_1 - f_1} = \frac{q_1 (15.0 \text{ cm})}{q_1 - 15.0 \text{ cm}} \).

When \(q_1 = +15.125 \text{ cm} \) \((d = 5.00 \text{ cm}) \), then \(p_1 = 1.82 \times 10^3 \text{ cm} = 18.2 \text{ m} \).

When \(q_1 = +45.333 \text{ cm} \) \((d = 10.0 \text{ cm}) \), then \(p_1 = 22.4 \text{ cm} = 0.224 \text{ m} \).

Thus, the range of focal distances for this camera is \(0.224 \text{ m} \) to \(18.2 \text{ m} \).

23.46 (a) From the thin lens equation, the image distance for the first lens is

\[
q_1 = \frac{p_1 f_1}{p_1 - f_1} = \frac{(15.0 \text{ cm})(10.0 \text{ cm})}{15.0 \text{ cm} - 10.0 \text{ cm}} = +30.0 \text{ cm}
\]

(b) With \(q_1 = +30.0 \text{ cm} \), the image of the first lens is located 30.0 cm in back of that lens. Since the second lens is only 10.0 cm beyond the first lens, this means that the first lens is trying to form its image at a location 20.0 cm beyond the second lens.

(c) The image the first lens forms (or would form if allowed to do so) serves as the object for the second lens. Considering the answer to part (b) above, we see that this will be a virtual object, with object distance \(p_2 = -20.0 \text{ cm} \).

(d) From the thin lens equation, the image distance for the second lens is

\[
q_2 = \frac{p_2 f_2}{p_2 - f_2} = \frac{(-20.0 \text{ cm})(5.00 \text{ cm})}{-20.0 \text{ cm} - 5.00 \text{ cm}} = +4.00 \text{ cm}
\]

(e) \(M_1 = -\frac{q_1}{p_1} = -\frac{30.0 \text{ cm}}{15.0 \text{ cm}} = -2.00 \)

(f) \(M_2 = -\frac{q_2}{p_2} = -\frac{+4.00 \text{ cm}}{-20.0 \text{ cm}} = +0.200 \)

(g) \(M = M_1 M_2 = (-2.00)(+0.200) = -0.400 \)

(h) Since \(q_2 > 0 \), the final image is real, and since \(M < 0 \), that image is inverted.
23.47 Since $q = +8.00 \text{ cm}$ when $p = +10.0 \text{ cm}$, we find that

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q} = \frac{1}{10.0 \text{ cm}} + \frac{1}{8.00 \text{ cm}} = \frac{18.0}{80.0 \text{ cm}}$$

Then, when $p = 20.0 \text{ cm}$,

$$\frac{1}{q} = \frac{1}{f} - \frac{1}{p} = \frac{18.0}{80.0 \text{ cm}} - \frac{1}{20.0 \text{ cm}} = \frac{18.0 - 4.00}{80.0 \text{ cm}} = \frac{14.0}{80.0 \text{ cm}}$$

or $q = \frac{80.0 \text{ cm}}{14.0} = +5.71 \text{ cm}$

Thus, a real image is formed 5.71 cm in front of the mirror.

23.48 (a) We are given that $p = 5f$, with both p and f being positive. The thin lens equation then gives

$$q = \frac{pf}{p - f} = \frac{(5f)f}{5f - f} = \frac{5f}{4}$$

(b) $M = -\frac{q}{p} = -\frac{(5f/4)}{5f} = -\frac{1}{4}$

(c) Since $q > 0$, the image is real. Because $M < 0$, the image is inverted. Since the object is real, it is located in front of the lens, and with $q > 0$, the image is located in back of the lens. Thus, the image is on the opposite side of the lens from the object.

23.49 Since the object is very distant ($p \rightarrow \infty$), the image distance equals the focal length, or $q = +50.0 \text{ mm}$. Now consider two rays that pass undeviated through the center of the thin lens to opposite sides of the image as shown in the sketch below.

From the sketch, observe that

$$\tan \left(\frac{\alpha}{2} \right) = \frac{1}{2} \left(\frac{35.0 \text{ mm}}{50.0 \text{ mm}} \right) = 0.350$$

Thus, the angular width of the image is

$$\alpha = 2 \tan^{-1} (0.350) = 38.6^\circ$$

23.50 (a) Using the sign convention from Table 23.2, the radii of curvature of the surfaces are $R_1 = -15.0 \text{ cm}$ and $R_2 = +10.0 \text{ cm}$. The lens maker’s equation then gives

$$\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = (1.50 - 1) \left(\frac{1}{-15.0 \text{ cm}} - \frac{1}{10.0 \text{ cm}} \right) \text{ or } f = -12.0 \text{ cm}$$

(b) If $p \rightarrow \infty$, then $q = f = -12.0 \text{ cm}$.

The thin lens equation gives $q = \frac{pf}{p - f} = p(-12.0 \text{ cm})$ and the following results:

continued on next page
(c) If \(p = 3|f| = +36.0 \text{ cm} \), \(q = -9.00 \text{ cm} \).

(d) If \(p = |f| = +12.0 \text{ cm} \), \(q = -6.00 \text{ cm} \).

(e) If \(p = |f|/2 = +6.00 \text{ cm} \), \(q = -4.00 \text{ cm} \).

23.51

As light passes left to right through the lens, the image position is given by

\[
q_i = \frac{p_i f_1}{p_i - f_1} \left(\frac{100 \text{ cm}}{80.0 \text{ cm}} \right) = +400 \text{ cm}
\]

This image serves as an object for the mirror with an object distance of \(p_2 = 100 \text{ cm} - q_i = -300 \text{ cm} \) (virtual object). From the mirror equation, the position of the image formed by the mirror is

\[
q_s = \frac{p_s f_2}{p_s - f_2} \left(\frac{-300 \text{ cm}}{-50.0 \text{ cm}} \right) = -60.0 \text{ cm}
\]

This image is the object for the lens as light now passes through it going right to left. The object distance for the lens is \(p_1 = 100 \text{ cm} - q_s = 100 \text{ cm} - (-60.0 \text{ cm}) \), or \(p_1 = 160 \text{ cm} \). From the thin lens equation,

\[
q_t = \frac{p_t f_1}{p_t - f_1} \left(\frac{160 \text{ cm}}{80.0 \text{ cm}} \right) = +160 \text{ cm}
\]

Thus, the final image is located 160 cm to the left of the lens.

The overall magnification is

\[
M = M_1 M_2 M_3 = \left(-\frac{q_3}{p_3} \right) \left(-\frac{q_2}{p_2} \right) \left(-\frac{q_1}{p_1} \right), \text{ or}
\]

\[
M = \left(-\frac{400 \text{ cm}}{100 \text{ cm}} \right) \left(-\frac{-60.0 \text{ cm}}{-300 \text{ cm}} \right) \left(-\frac{160 \text{ cm}}{160 \text{ cm}} \right) = -0.800
\]

Since \(M < 0 \), the final image is inverted.

23.52

Since the object is midway between the lens and mirror, the object distance for the mirror is \(p_1 = +12.5 \text{ cm} \). The mirror equation gives the image position as

\[
\frac{1}{q_i} = \frac{2}{R} - \frac{1}{p_1} = \frac{2}{20.0 \text{ cm}} - \frac{1}{12.5 \text{ cm}} = \frac{5 - 4}{50.0 \text{ cm}} = \frac{1}{50.0 \text{ cm}}, \text{ or } q_i = +50.0 \text{ cm}
\]

This image serves as the object for the lens, so \(p_2 = 25.0 \text{ cm} - q_i = -25.0 \text{ cm} \). Note that since \(p_2 < 0 \), this is a virtual object. The thin lens equation gives the image position for the lens as

\[
q_s = \frac{p_s f_1}{p_s - f_1} \left(\frac{-25.0 \text{ cm}}{-16.7 \text{ cm}} \right) = -50.3 \text{ cm}
\]

Since \(q_s < 0 \), this is a virtual image that is located 50.3 cm in front of the lens or 25.3 cm behind the mirror. The overall magnification is

\[
M = M_1 M_2 = \left(-\frac{q_3}{p_3} \right) \left(-\frac{q_2}{p_2} \right) \left(-\frac{q_1}{p_1} \right) = \left(-\frac{50.0 \text{ cm}}{12.5 \text{ cm}} \right) \left(-\frac{-50.3 \text{ cm}}{-25.0 \text{ cm}} \right) = +8.05
\]

Since \(M > 0 \), the final image is upright.
A hemisphere is too thick to be described as a thin lens. The light is undeviated on entry into the flat face. We next consider the light’s exit from the curved surface, for which \(R = -6.00 \text{ cm} \).

The incident rays are parallel, so \(p = \infty \).

Then, \(\frac{n_1}{q} + \frac{n_2}{p} = \frac{n_2 - n_1}{R} \) becomes
\[
0 + \frac{1.00}{q} = \frac{1.00 - 1.56}{-6.00 \text{ cm}}
\]
from which \(q = 10.7 \text{ cm} \).

23.54

(a) The thin lens equation gives the image distance for the first lens as
\[
q_1 = \frac{p_1 f_1}{p_1 - f_1} = \frac{(40.0 \text{ cm})(20.0 \text{ cm})}{40.0 \text{ cm} - 20.0 \text{ cm}} = 40.0 \text{ cm}
\]
The magnification by this lens is then \(M_1 = -\frac{q_1}{p_1} = -\frac{40.0}{40.0} \text{ cm} = -1.00 \).

The real image formed by the first lens is the object for the second lens. Thus, \(p_2 = 50.0 \text{ cm} - q_1 = +10.0 \text{ cm} \) and the thin lens equation gives
\[
q_2 = \frac{p_2 f_2}{p_2 - f_2} = \frac{(10.0 \text{ cm})(5.00 \text{ cm})}{10.0 \text{ cm} - 5.00 \text{ cm}} = +10.0 \text{ cm}
\]
The final image is **10.0 cm in back of the second lens**.

(b) The magnification by the second lens is \(M_2 = -\frac{q_2}{p_2} = -\frac{10.0 \text{ cm}}{10.0 \text{ cm}} = -1.00 \), so the overall magnification is \(M = M_1 M_2 = (-1.00)(-1.00) = +1.00 \). Since this magnification has a value of unity, the final image is the same size as the original object, or \(h' = M h_1 = (+1.00)(2.00 \text{ cm}) = 2.00 \text{ cm} \).

The image distance for the second lens is positive, so the final image is **real**.

(c) When the two lenses are in contact, the focal length of the combination is
\[
\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{20.0 \text{ cm}} + \frac{1}{5.00 \text{ cm}} \text{, or } f = 4.00 \text{ cm}
\]
The image position is then
\[
q = \frac{pf}{p - f} = \frac{(5.00 \text{ cm})(4.00 \text{ cm})}{5.00 \text{ cm} - 4.00 \text{ cm}} = +20.0 \text{ cm}
\]
23.55 With light going through the piece of glass from left to right, the radius of the first surface is positive and that of the second surface is negative according to the sign convention of Table 23.2. Thus, \(R_1 = +2.00 \text{ cm} \) and \(R_2 = -4.00 \text{ cm} \).

Applying \(\frac{n_p}{p} + \frac{n_q}{q} = \frac{n_2-n_1}{R} \) to the first surface gives

\[
\frac{1.00}{1.00 \text{ cm}} + \frac{1.50}{q_1} = \frac{1.50 - 1.00}{+2.00 \text{ cm}}
\]

which yields \(q_1 = -2.00 \text{ cm} \). The first surface forms a virtual image 2.00 cm to the left of that surface and 16.0 cm to the left of the second surface.

The image formed by the first surface is the object for the second surface, so \(p_2 = +16.0 \text{ cm} \) and

\[
\frac{n_p}{p} + \frac{n_q}{q} = \frac{n_2-n_1}{R}
\]

gives

\[
\frac{1.50}{16.0 \text{ cm}} + \frac{1.00}{q_2} = \frac{1.00 - 1.50}{-4.00 \text{ cm}} \quad \text{or} \quad q_2 = +32.0 \text{ cm}
\]

The final image formed by the piece of glass is a real image located 32.0 cm to the right of the second surface.

23.56 Consider an object \(O_1 \) at distance \(p_1 \) in front of the first lens. The thin lens equation gives the image position for this lens as

\[
\frac{1}{q_1} = \frac{1}{f_1} - \frac{1}{p_1}
\]

The image, \(I_1 \), formed by the first lens serves as the object, \(O_2 \), for the second lens. With the lenses in contact, this will be a virtual object if \(I_1 \) is real and will be a real object if \(I_1 \) is virtual. In either case, if the thicknesses of the lenses may be ignored,

\[
p_2 = -q_1 \quad \text{and} \quad \frac{1}{p_2} = \frac{1}{q_1} = -\frac{1}{f_1} + \frac{1}{p_1}
\]

Applying the thin lens equation to the second lens, \(\frac{1}{p_2} + \frac{1}{q_2} = \frac{1}{f_2} \) becomes

\[
-\frac{1}{f_1} + \frac{1}{p_1} + \frac{1}{q_2} = \frac{1}{f_2} \quad \text{or} \quad \frac{1}{p_1} + \frac{1}{q_2} = \frac{1}{f_1} + \frac{1}{f_2}
\]

Observe that this result is a thin lens type equation relating the position of the original object \(O_1 \) and the position of the final image \(I_2 \) formed by this two lens combination. Thus, we see that we may treat two thin lenses in contact as a single lens having a focal length, \(f \), given by

\[
\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}
\]
23.57 From the thin lens equation, the image distance for the first lens is

\[q_1 = \frac{p_1 f_1}{p_1 - f_1} = \frac{(40.0 \text{ cm})(30.0 \text{ cm})}{40.0 \text{ cm} - 30.0 \text{ cm}} = +120 \text{ cm} \]

and the magnification by this lens is \(M_1 = -\frac{q_1}{p_1} = -\frac{120 \text{ cm}}{40.0 \text{ cm}} = -3.00 \).

The real image formed by the first lens serves as the object for the second lens, with object distance of \(p_2 = 110 \text{ cm} - q_i = -10.0 \text{ cm} \) (a virtual object). The thin lens equation gives the image distance for the second lens as

\[q_2 = \frac{p_2 f_2}{p_2 - f_2} = \frac{(-10.0 \text{ cm}) f_2}{-10.0 \text{ cm} - f_2} \]

(a) If \(f_2 = -20.0 \text{ cm} \), then \(q_2 = +20.0 \text{ cm} \) and the magnification by the second lens is

\[M_2 = -\frac{q_2}{p_2} = -\frac{(20.0 \text{ cm})}{(-10.0 \text{ cm})} = +2.00 \]

The final image is located 20.0 cm to the right of the second lens and the overall magnification is \(M = M_1 M_2 = (-3.00)(+2.00) = -6.00 \).

(b) Since \(M < 0 \), the final image is \underline{inverted}.

(c) If \(f_2 = +20.0 \text{ cm} \), then \(q_2 = +6.67 \text{ cm} \)

and \(M_2 = -\frac{q_2}{p_2} = -\frac{6.67 \text{ cm}}{(-10.0 \text{ cm})} = +0.667 \)

The final image is 6.67 cm to the right of the second lens and the overall magnification is

\[M = M_1 M_2 = (-3.00)(+0.667) = -2.00 \]

Since \(M < 0 \), the final image is \underline{inverted}.

23.58 The object is located at the focal point of the upper mirror. Thus, the upper mirror creates an image at infinity (that is, parallel rays leave this mirror). The lower mirror focuses these parallel rays at its focal point, located at the hole in the upper mirror. Thus, the image is real, inverted, and actual size.

For the upper mirror:

\[\frac{1}{p} + \frac{1}{q} = \frac{1}{f} \Rightarrow \frac{1}{7.50 \text{ cm}} + \frac{1}{q_1} = \frac{1}{7.50 \text{ cm}} : q_1 = \infty \]

For the lower mirror:

\[\frac{1}{q_2} = \frac{1}{7.50 \text{ cm}} : q_2 = 7.50 \text{ cm} \]

Light directed into the hole in the upper mirror reflects as shown, to behave as if it were reflecting from the hole.
23.59 (a) The lens maker’s equation, \[\frac{1}{f} = (n - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right), \] gives

\[\frac{1}{5.00 \text{ cm}} = (n - 1) \left(\frac{1}{9.00 \text{ cm}} - \frac{1}{-11.0 \text{ cm}} \right) \]

which simplifies to \(n = 1 + \frac{1}{5.00} \left(\frac{99.0}{11.0 + 9.00} \right) = 1.99 \).

(b) As light passes from left to right through the lens, the thin lens equation gives the image distance as

\[q_1 = \frac{p_1 f}{p_1 - f} = \frac{(8.00 \text{ cm})(5.00 \text{ cm})}{8.00 \text{ cm} - 5.00 \text{ cm}} = +13.3 \text{ cm} \]

This image formed by the lens serves as an object for the mirror with object distance

\[p_2 = 20.0 \text{ cm} - q_1 = +6.67 \text{ cm} \]

The mirror equation then gives

\[q_2 = \frac{p_2 R}{2 p_2 - R} = \frac{(6.67 \text{ cm})(8.00 \text{ cm})}{2(6.67 \text{ cm}) - 8.00 \text{ cm}} = +10.0 \text{ cm} \]

This real image, formed 10.0 cm to the left of the mirror, serves as an object for the lens as light passes through it from right to left. The object distance is

\[p_3 = 20.0 \text{ cm} - q_2 = +10.0 \text{ cm} \]

and the thin lens equation gives

\[q_3 = \frac{p_3 f}{p_3 - f} = \frac{(10.0 \text{ cm})(5.00 \text{ cm})}{10.0 \text{ cm} - 5.00 \text{ cm}} = +10.0 \text{ cm} \]

The final image is located \(10.0 \text{ cm to the left of the lens} \) and its overall magnification is

\[M = M_1 M_2 M_3 = \left(-\frac{q_1}{p_1} \right) \left(-\frac{q_2}{p_2} \right) \left(-\frac{q_3}{p_3} \right) = \left(-\frac{13.3}{8.00} \right) \left(-\frac{10.0}{6.67} \right) \left(-\frac{10.0}{10.0} \right) = -2.50 \]

(c) Since \(M < 0 \), the final image is inverted.

23.60 From the thin lens equation, the object distance is \(p = \frac{q f}{q - f} \).

(a) If \(q = +4f \), then \(p = \frac{(4f) f}{4f - f} = \frac{4f}{3} \).

(b) When \(q = -3f \), we find \(p = \frac{(-3f) f}{-3f - f} = \frac{3f}{4} \).

(c) In case (a), \(M = -\frac{q}{p} = -\frac{4f}{4f/3} = -3 \)

and in case (b), \(M = -\frac{q}{p} = -\frac{3f}{3f/4} = +4 \).
23.61 If \(R_1 = -3.00 \text{ m} \) and \(R_2 = -6.00 \text{ m} \), the focal length is given by

\[
\frac{1}{f} = \left(\frac{n_1}{n_2} - 1 \right) \left(\frac{1}{3.00 \text{ m}} + \frac{1}{6.00 \text{ m}} \right) = \left(\frac{n_1 - n_2}{n_2} \right) \left(\frac{-1}{6.00 \text{ m}} \right)
\]

or

\[
f = \frac{(6.00 \text{ m}) n_2}{n_2 - n_1}
\] \hspace{1cm} [1]

(a) If \(n_1 = 1.50 \) and \(n_2 = 1.00 \), then \(f = \frac{(6.00 \text{ m})(1.00)}{1.00 - 1.50} = -12.0 \text{ m} \).

The thin lens equation gives \(q = \frac{pf}{p-f} = \frac{(10.0 \text{ m})(-12.0 \text{ m})}{10.0 \text{ m} + 12.0 \text{ m}} = -5.45 \text{ m} \).

A virtual image is formed \(5.45 \text{ m} \) to the left of the lens.

(b) If \(n_1 = 1.50 \) and \(n_2 = 1.33 \), the focal length is

\[
f = \frac{(6.00 \text{ m})(1.33)}{1.33 - 1.50} = -46.9 \text{ m}
\]

and \(q = \frac{pf}{p-f} = \frac{(10.0 \text{ m})(-46.9 \text{ m})}{10.0 \text{ m} + 46.9 \text{ m}} = -8.24 \text{ m} \).

The image is located \(8.24 \text{ m} \) to the left of the lens.

(c) When \(n_1 = 1.50 \) and \(n_2 = 2.00 \), \(f = \frac{(6.00 \text{ m})(2.00)}{2.00 - 1.50} = +24.0 \text{ m} \)

and \(q = \frac{pf}{p-f} = \frac{(10.0 \text{ m})(24.0 \text{ m})}{10.0 \text{ m} - 24.0 \text{ m}} = -17.1 \text{ m} \).

The image is \(17.1 \text{ m} \) to the left of the lens.

(d) Observe from Equation [1] that \(f < 0 \) if \(n_1 > n_2 \) and \(f > 0 \) when \(n_1 < n_2 \). Thus, a diverging lens can be changed to converging by surrounding it with a medium whose index of refraction exceeds that of the lens material.
23.62 The inverted image is formed by light that leaves the object and goes directly through the lens, never having reflected from the mirror. For the formation of this inverted image, we have

\[M = -\frac{d_i}{p_i} = -1.50 \quad \text{giving} \quad q_i = +1.50 \ p_i \]

The thin lens equation then gives

\[\frac{1}{p_i} + \frac{1}{1.50 \ p_i} = \frac{1}{10.0 \ \text{cm}} \quad \text{or} \quad p_i = (10.0 \ \text{cm}) \left(1 + \frac{1}{1.50} \right) = 16.7 \ \text{cm} \]

The upright image is formed by light that passes through the lens after reflecting from the mirror. The object for the lens in this upright image formation is the image formed by the mirror. In order for the lens to form the upright image at the same location as the inverted image, the image formed by the mirror must be located at the position of the original object (so the object distances, and hence image distances, are the same for both the inverted and upright images formed by the lens). Therefore, the object distance and the image distance for the mirror are equal, and their common value is

\[q_{\text{mirror}} = p_{\text{mirror}} = 40.0 \ \text{cm} - p_i = 40.0 \ \text{cm} - 16.7 \ \text{cm} = +23.3 \ \text{cm} \]

The mirror equation, \[\frac{1}{p_{\text{mirror}}} + \frac{1}{q_{\text{mirror}}} = \frac{2}{R} = \frac{1}{f_{\text{mirror}}} \], then gives

\[\frac{1}{f_{\text{mirror}}} = \frac{1}{23.3 \ \text{cm}} + \frac{1}{23.3 \ \text{cm}} = \frac{1}{23.3 \ \text{cm}} = \frac{23.3 \ \text{cm}}{2} = +11.7 \ \text{cm} \]

23.63 (a) The lens maker’s equation for a lens made of material with refractive index \(n_i = 1.55 \) and immersed in a medium having refractive index \(n_2 \) is

\[\frac{1}{f} = \left(\frac{n_i}{n_2} - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = \left(\frac{1.55 - n_2}{n_2} \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \]

Thus, when the lens is in air, we have

\[\frac{1}{f_{\text{air}}} = \left(\frac{1.55 - 1.00}{1.00} \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \]

and when it is immersed in water,

\[\frac{1}{f_{\text{water}}} = \left(\frac{1.55 - 1.33}{1.33} \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \]

\[\frac{f_{\text{water}}}{f_{\text{air}}} = \left(\frac{1.33}{1.00} \right) \left(\frac{1.55 - 1.00}{1.55 - 1.33} \right) = 1.33 \left(\frac{0.55}{0.22} \right) \]

If \(f_{\text{air}} = 79.0 \ \text{cm} \), the focal length when immersed in water is

\[f_{\text{water}} = (79.0 \ \text{cm}) \left(1.33 \left(\frac{0.55}{0.22} \right) \right) = 263 \ \text{cm} \]

(b) The focal length for a mirror is determined by the law of reflection, which is independent of the material of which the mirror is made and of the surrounding medium. Thus, the focal length depends only on the radius of curvature and not on the material making up the mirror or the surrounding medium. This means that, for the mirror,

\[f_{\text{water}} = f_{\text{air}} = 79.0 \ \text{cm} \]