HW 2: A rod of length ℓ_o lies in the $x'y'$ plane of its rest frame and makes an angle θ_o with the x' axis. What is the length and orientation of the rod in the lab frame (x, y) in which the rod moves to the positive x direction with a uniform speed u? (Fig. 1)

HW 3: Tipler 1-42

HW 4: The Doppler effect is used in many devices especially in tracking moving bodies. Consider a satellite moving with velocity \vec{v} at \vec{r} from a ground radar. The satellite sends out EM signal of frequency f_o (proper frequency). The detector on the ground would detect Doppler shifted frequency f_D. Since the frequency f_o is known, the ground station would measure the beat frequency $f_D - f_o$.

(1) Show that $f_D - f_o \approx f_o \left(1 + \frac{v}{c} \cos \theta \right)$. Here θ is the angle between $-\vec{r}$ and \vec{v}.

(2) The radial velocity of the satellite is $\frac{dr}{dt} = \hat{r} \cdot \vec{v}$. Then you can calculate the total radial distance of travel between times t_a and t_b by simply counting the number of cycles of beat frequency (N_{ba}):

$$\Delta r = r_b - r_a = -\lambda_o N_{ba},$$

where λ_o is the proper wavelength of the satellite signal.

HW 5: Tipler 1-43.

HW 6: Tipler 2-3 (a) and (b).

HW 7: Tipler 2-8 (a) and (b).
HW 8: Tipler 2-9.

HW 9: Tipler 2-42.