Relativity

Lorentz transformation

A coordinate rotation:

\[t' = t \]
\[x' = x \cos \theta + y \sin \theta \]
\[y' = -x \sin \theta + y \cos \theta \]
\[z' = z' \]

Notice that distance is conserved under a coordinate rotation:

\[x'^2 + y'^2 = (x \cos \theta + y \sin \theta)^2 + (-x \sin \theta + y \cos \theta)^2 \]
\[= x^2 \cos^2 \theta + 2xy \cos \theta \sin \theta + y^2 \sin^2 \theta + x^2 \sin^2 \theta + x^2 \sin^2 \theta - 2xy \cos \theta \sin \theta + y^2 \cos^2 \theta \]
\[= x^2(\cos^2 \theta + \sin^2 \theta) + y^2(\sin^2 \theta + \cos \theta) \]
\[= x^2 + y^2. \]

This might seem obvious because the mathematics just confirms your everyday experiences.

The Galilean transformation:

\[t' = t \]
\[x' = x - vt \]
\[y' = y \]
\[z' = z \]

Inverse transformation:

\[t = t' \]
\[x = x' + vt' \]
\[y = y' \]
\[z = z' \]

The Lorentz transformation:

\[t' = \frac{t - \frac{vx}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}} \]
\[x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}} \]
\[y' = y \]
\[z' = z \]
Inverse transformation:

\[
\begin{align*}
 t &= t' + \frac{vx'}{c^2} \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \\
 x &= x' + vt' \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \\
 y &= y' \\
 z &= z'
\end{align*}
\]

Notice that in the limit that \(v/c \to 0 \), but \(v \) remains finite, the Lorentz transformations approach the Galilean transformation. So, only when \(v \) is comparable to \(c \) are the effects of special relativity revealed.

Derive time dilation from the Lorentz transformations:

Two events, \#1 at \((t_1, x_1)\) and \#2 at \((t_2, x_2)\), with occur at the same place \((x_1 = x_2)\) in the \(t, x \) coordinate system. Thus the proper time between the events is

\[
\Delta T_0 = t_2 - t_1.
\]

The time between the events in the primed coordinate system is

\[
\Delta T' = t'_2 - t'_1 = \frac{t_2 - vx_2/c^2}{\sqrt{1 - \frac{v^2}{c^2}}} - \frac{t_1 - vx_1/c^2}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{t_2 - vx_2/c^2 - t_1 + vx_1/c^2}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{t_2 - t_1}{\sqrt{1 - \frac{v^2}{c^2}}} \quad \text{because} \quad x_1 = x_2 = \Delta T_0 \sqrt{1 - \frac{v^2}{c^2}},
\]

which is the correct expression for time dilation.

Derive length contraction from the Lorentz transformations:

A stick is at rest in the unprimed \(t, x \) coordinate system. Two events, \#1 at \((t_1, x_1)\) and \#2 at \((t_2, x_2)\), occur at different times \(t_1 \neq t_2 \) but at either end of the stick. And because the stick is at rest in the unprimed coordinate system, the proper length of the stick is

\[
L_0 = x_2 - x_1
\]

It has been arranged that these same two events occur at the same time in the primed coordinate system, \(t'_1 = t'_2 \). So, in the primed coordinates the length of the stick is measured
to be \(L' = x'_2 - x'_1 \). Now, the proper length of the stick is

\[
L_0 = x_2 - x_1 = \frac{x'_2 - vt'_2}{\sqrt{1 - v^2/c^2}} - \frac{x'_1 - vt'_1}{\sqrt{1 - v^2/c^2}} = \frac{x'_2 - vt'_2 - x'_1 + vt'_1}{\sqrt{1 - v^2/c^2}} = \frac{x'_2 - x'_1}{\sqrt{1 - v^2/c^2}} \quad \text{because } t'_1 = t'_2
\]

\[
L' = \frac{L'}{\sqrt{1 - v^2/c^2}} = \frac{L'_0}{\sqrt{1 - v^2/c^2}}
\]

which is the correct expression for length contraction.

Consider the Galilean addition of velocities:

With the Lorentz transformations in hand, we can now see how velocities are viewed from different coordinate systems. First consider the Galilean addition of velocities. Consider a bird flying along, and note two nearby events along the bird’s path—perhaps the events are two flaps of the bird’s wings. These events are noted to occur at \((t_1, x_1, y_1)\) and \((t_2, x_2, y_2)\) in the unprimed coordinate system, and at \((t'_1, x'_1, y'_1)\) and \((t'_2, x'_2, y'_2)\) in the primed coordinate system. The components of the speed of the bird in the unprimed system are

\[
u_x = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t} \quad \text{and} \quad \nu_y = \frac{y_2 - y_1}{t_2 - t_1} = \frac{\Delta y}{\Delta t}
\]

and in the primed coordinates

\[
u'_x = \frac{x'_2 - x'_1}{t'_2 - t'_1} = \frac{\Delta x'}{\Delta t'} \quad \text{and} \quad \nu'_y = \frac{y'_2 - y'_1}{t'_2 - t'_1} = \frac{\Delta y'}{\Delta t'}
\]

Now use the Lorentz transformations to relate these different speeds:

\[
u_x = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t} = \frac{(\Delta x' + v\Delta t')/\sqrt{1 - v^2/c^2}}{\sqrt{1 - v^2/c^2}} = \frac{\Delta x'/\Delta t' + v}{\sqrt{1 + v\Delta x'/\Delta t'c^2}} \quad \text{and, finally}
\]

\[
u_x = \frac{u'_x + v}{\sqrt{1 + vu'_x/c^2}}.
\]
and

\[u_y = \frac{y_2 - y_1}{t_2 - t_1} = \frac{\Delta y}{\Delta t} = \frac{\Delta y'}{(\Delta t' + v\Delta x'/c^2)/\sqrt{1 - v^2/c^2}} = \frac{\Delta y'/\Delta t'}{(1 + v\Delta x'/\Delta t'c^2)/\sqrt{1 - v^2/c^2}} \] and, finally

\[u_y = \frac{u'_y\sqrt{1 - v^2/c^2}}{1 + vu'_x/c^2}. \]

If \(v \) and \(u'_x \) and \(u'_y \) are all less than \(c \) then \(u_x, u_y, \) and also \(\sqrt{u'^2_x + u'^2_y} \) are all less than \(c \). Try this out with \(v = u'_x = u'_y = 9c/10 \).