HOMEWORK ASSIGNMENT 2
Problems Chapter 2

2-2 Assume an ideal gas whose equation of state gives

\[PV = nRT \]

a) How many moles?

\[n = \frac{PV}{RT} = \frac{1.5 \times 10^6 \times 0.5}{8.314 \times 10^3 \times (273.15 + 20)} = 0.308 \]

b) How many kilograms? The atomic weight of oxygen is 16, but it is a molecular gas with two oxygens per molecule, so

\[m = 32n = 32 \times 0.308 = 9.86 \]

c) What is the pressure if the temperature is increased to 500 °C?

\[P' = P \frac{T'}{T} = 1.5 \times 10^6 \frac{(273.15 + 500)}{(273.15 + 20)} = 3.96 \times 10^6 \]

d) How many kilomoles can be withdrawn at 20 °C before the pressure decreases to 10%?

\[\frac{n - \Delta n}{n} = \frac{P'}{P} = .1 \]

\[\Delta n = 0.9 \times n = 0.9 \times 0.308 = 0.277 \]

2-3 Ideal gas equation of state

\[P = \frac{RT}{v} = Av \]

The second equality is true only because of the process considered.

a) The constant A can be evaluated at the beginning point

\[A = \frac{RT_1}{v_1^2} \]

b) The curve in the \(P - v \) plane is a straight line with slope A.

c) What is the temperature if \(v = 2v_1 \), given \(T_1 = 200K \)? Since A is constant

\[T = T_1 \frac{v^2}{v_1^2} = 200 \times 4 = 800K \]

2-8 The Dieterici equation of state is

\[P = \frac{RT}{v - b} e^{-a/RTv} \]
a) Find the expansivity \(\beta \).

\[
\beta = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_P
\]

This is difficult since we are not given a simple relationship \(v = v(T, P) \). Instead use the cyclic relation

\[
\left(\frac{\partial v}{\partial T} \right)_p \left(\frac{\partial P}{\partial v} \right)_T \left(\frac{\partial T}{\partial P} \right)_v = -1
\]

to get

\[
\left(\frac{\partial v}{\partial T} \right)_p = - \left(\frac{\partial v}{\partial P} \right)_T \left(\frac{\partial P}{\partial T} \right)_v
\]

From the equation of state

\[
\left(\frac{\partial P}{\partial v} \right)_T = - \frac{P}{v-b} + \frac{a}{RTv^2} P, \quad \left(\frac{\partial P}{\partial T} \right)_v = \frac{P}{T} + \frac{a}{RT^2v} P
\]

Finally then

\[
\beta = -\frac{1}{v} \left(\frac{\partial v}{\partial P} \right)_T \left(\frac{\partial P}{\partial T} \right)_v = -\frac{1}{v} \frac{P}{T} + \frac{a}{RTv^2} P
\]

\[
= \frac{(v-b)}{Tv} \frac{1 + \frac{a}{RTv} (v-b)}{1 - \frac{a}{RTv} (v-b)}
\]

b) For large \(v \) and large \(T \) the result of part a) becomes

\[
\beta \rightarrow \frac{1}{T}
\]

which it the expected ideal gas result.

2-13 Assume that the pressure is constant and that \(\beta \) is only weakly dependent on the temperature (valid for the liquid phase). Then

\[
V = V_0 (1 + \beta (T - T_0))
\]

The amount that spills over is

\[
V - V_0 = V_0 \beta (T - T_0) = 250 \times 0.21 \times 10^{-3} (50 - 20) = 1.58 \text{ cm}^3
\]