In some sort of crude sense which no vulgarity, no humour, no overstatement can quite extinguish, the physicists have known sin; and this is a knowledge which they cannot lose.

J. Robert Oppenheimer

(1) The wave function \(\psi(x) = A \exp\left[-\frac{b^2 x^2}{2}\right] \), where \(A \) and \(b \) are real constants, is a normalized eigenfunction of the Schrödinger equation for a particle of mass \(M \) and energy \(E \) in a one dimensional potential \(V(x) \) such that \(V(x) = 0 \) at \(x = 0 \). Which of the following is correct? **(20 points)**

(A) \(V = \frac{\hbar^2 b^4}{2M} \)

(B) \(V = \frac{\hbar^2 b^4 x^2}{2M} \)

(C) \(V = \frac{\hbar^2 b^6 x^4}{2M} \)

(D) \(E = \hbar^2 b^2 (1 - b^2 x^2) \)

(E) \(E = \frac{\hbar^2 b^4}{2M} \)

(2) In perturbation theory, what is the first order correction to the energy of a hydrogen atom (Bohr radius \(a_0 \)) in its ground state due to the presence of a static electric field \(E \)? **(20 points)**

(A) Zero

(B) \(eEa_0 \)

(C) \(3eEa_0 \)

(D) \(\frac{8\varepsilon_2 E a_0^3}{3} \)

(E) \(\frac{8\varepsilon_2 E a_0^3}{3} \)

(3) Two ions, 1 and 2, at fixed separation, with spin and angular momentum operators \(\vec{S}_1 \) and \(\vec{S}_2 \), have the interaction Hamiltonian \(H = -J \vec{S}_1 \cdot \vec{S}_2 \), where \(J > 0 \). The values of \(||\vec{S}_1||^2 \) and \(||\vec{S}_2||^2 \) are fixed at \(S_1(S_1 + 1) \) and \(S_2(S_2 + 1) \), respectively. Which of the following is the energy of the ground state of the system? **(25 points)**

(A) 0

(B) \(-JS_1S_2 \)

(C) \(-J[S_1(S_1 + 1) - S_2(S_2 + 1)] \)

(D) \(-(J/2)[(S_1 + S_2)(S_1 + S_2 + 1) - S_1(S_1 + 1) - S_2(S_2 + 1)] \)

(E) \(-J \left[\frac{S_1(S_1+1)+S_2(S_2+1)}{(S_1+S_2)(S_1+S_2+1)} \right] \)