I. BEHAVIOUR AND SOLUTIONS OF
ORDINARY DIFFERENTIAL EQUATIONS

Suppose we have a general second order operator

\[
\left(\frac{d^2}{dx^2} + p \frac{d}{dx} + q \right) y = 0 .
\]

(1.1)

Let us substitute the following

\[
y = e^\int f(x) dx .
\]

(1.2)

One finds (prime denoting \(\frac{d}{dx} \))

\[
\frac{y'}{y} = f + \frac{z'}{z}
\]

(1.3)

\[
\frac{y^{(n+1)}}{y} = \left(\frac{y^{(n)}}{y} \right)' + \frac{y^{(n)} y'}{y y'}
\]

(1.4)

Thus, we get

\[
\frac{y''}{y} = f' + \frac{z''}{z} + f^2 + 2 f \frac{z'}{z}
\]

(1.5)

and the main result

\[
z'' + (p + 2f)z' + (q + f' + pf + f^2)z = 0 .
\]

(1.6)

Now let us put in the condition

\[
f = -\frac{1}{2}p
\]

(1.7)

so that

\[
z'' + \left(q - \frac{1}{2}p' - \frac{1}{4}p^2 \right) z = 0
\]

(1.8)

and we get the invariant

\[
Q = q - \frac{1}{2}p' - \frac{1}{4}p^2
\]

(1.9)

of the equivalence class of equations.

Let us do the following change, \(x \rightarrow r(x) \), such that \(z'' + Qz = 0 \) becomes (\(\dot{\cdot} \) denotes \(\frac{d}{dr} \))

\[
(r')^2 \ddot{z} + r'' \dot{z} + Qz = 0 .
\]

(1.10)
The domains over which solutions can be written may be quite different; i.e. \((-\pi, \pi) \rightarrow (-\infty, \infty)\). Now, Eq. (1.10) can be rewritten as

\[
(r')^2 \left(\ddot{z} + \frac{r''}{(r')^2} \dot{z} + \frac{Q}{(r')^2} z \right) = 0.
\]

(1.11)

Noting that

\[
\frac{d}{dr} = \frac{1}{r} \frac{d}{dx}
\]

we can write

\[
-\frac{1}{2r} \left(\frac{r'''}{r'} - \frac{2}{3} \left(\frac{r''}{r'} \right)^2 \right) - \frac{1}{2r} \left(\frac{r'''}{r'} - \frac{3}{2} \left(\frac{r''}{r'} \right)^2 \right) = \frac{1}{(r')^2} \frac{d}{dx} \left(\frac{r'}{r'} - \frac{1}{2} \right).
\]

(1.13)

Using Eq. (1.13) and the transformation \(z \rightarrow ze^{\frac{1}{2} \int \frac{r''}{r'} dx}\) we get

\[
\left(\frac{d^2}{dr^2} + \frac{1}{(r')^2} \left(Q + \frac{\left(\frac{r'}{r'} - \frac{1}{2} \right)''}{(r')^2} \right) \right) ze^{\frac{1}{2} \int \frac{r''}{r'} dx} = 0.
\]

(1.14)

(The Schwarzian derivative is given by

\[
\{r, x\} \equiv \left(\frac{r'''}{r'} - \frac{3}{2} \left(\frac{r''}{r'} \right)^2 \right),
\]

(1.15a)

\[
\{x, r\} = \frac{1}{(r')^2} \{r, x\}.
\]

(1.15b)

For some function \(S\)

\[
\{S, x\} \equiv \{S, r\}(r')^2 + \{r, x\}.
\]

(1.16)

Note that

\[
e^{\frac{1}{2} \int \frac{r''}{r'} dx} = e^{\left(\ln \frac{r''}{r'} \right)^{\frac{1}{2}}} = \sqrt{r'}.
\]

(1.17)

Thus Eq. (1.14) becomes

\[
\left(\frac{d^2}{dr^2} + \frac{1}{(r')^2} \left(Q + \frac{\left(\frac{r'}{r'} - \frac{1}{2} \right)''}{(r')^2} \right) \right) \sqrt{r'} z = 0.
\]

(1.18)

Suppose that \(r\) is chosen such that the second term of Eq. (1.18) is zero, then a solution \(z\) of Eq. (1.18) is

\[
z = (r')^{-\frac{1}{2}}.
\]

(1.19)
A linearly independent solution of \(\frac{d^2}{dr^2} \sqrt{r} z = 0 \) is
\[
z = r (r')^{-\frac{1}{2}}. \tag{1.20}
\]

Now suppose that the second term of Eq. (1.18) is equal to one, then we find for
\[
\left(\frac{d}{dr^2} + 1 \right) \sqrt{r} z = 0
\]
that
\[
z = e^{\pm ir} \sqrt{r'} \tag{1.21}
\]

Eq. (1.21) is similar in form to a solution like
\[
G = \frac{e^{\pm \int \sqrt{F} dx}}{F^{\frac{1}{4}}}. \tag{1.22}
\]

One uses this in a W.K.B. approximation. Every solution can be written in the form Eq. (1.22). As an example we can write
\[
\frac{\sin r}{\sqrt{r'}} = \frac{e^{ig}}{\sqrt{g'}}. \tag{1.23}
\]

This \(g \) must be a non-trivial complex function.
II. FORM OF SOLUTIONS NEAR REGULAR SINGULAR POINTS

For
\[z'' + Qz = 0 , \]
(2.1)
if we have a solution \(z_1 \) we can always find another solution
\[z_2 = z_1 \int \frac{1}{(z_1)^2} dx . \]
(2.2)

For
\[y'' + py' + qy = 0 , \]
(2.3)
we have the analogous second solution
\[y_2 = y_1 \int \frac{W(x)}{(y_1)^2} dx . \]
(2.4)

Consider the following (form of the confluent hypergeometric) equation
\[z'' + \left(-\alpha^2 + \frac{2\alpha\beta}{x} + \frac{1}{x^2} - \gamma^2 \right)z = 0 . \]
(2.5)
This has a regular singular point at \(x = 0 \) and an irregular singular point at \(x = \infty \). Now, for \(x \to 0 \), \(z \) will have the behaviour
\[z \to x^\frac{1}{2} + \epsilon' \gamma, \quad \epsilon' = \pm 1 \]
(2.6a)
and for \(x \to \infty \), \(z \) will have the behaviour
\[z \to e^{\epsilon \alpha x}x^{-\epsilon \beta}, \quad \epsilon = \pm 1 . \]
(2.6b)

For an arbitrary point (ordinary) we can impose whatever boundary conditions we want
\[x \to x_0 : z = 1, \quad (x - x_0) . \]

For the hypergeometric equation we would consider
\[x(x - 1)z'' + \left(\frac{1}{4} - \alpha^2 \right) - \frac{1}{x} - \frac{1}{x - 1} + \frac{1}{x - 1} \right) z = 0. \]
(2.7)
The behaviour near \(x \to 1, 0, \infty \) will be
\[x \to 1 : (x - 1)^{\frac{1}{2} + \epsilon'' \gamma}, \quad \epsilon'' = \pm 1 . \]
(2.8a)
\[x \rightarrow 0 : x^{1/2 + \epsilon' \beta}, \epsilon' = \pm 1 \]
\[x \rightarrow \infty : x^{1/2 + \epsilon \alpha}, \epsilon = \pm 1. \]

Now let us look at solving equations like Eq. (2.5). Suppose we factor out the quantity
\[z = x^{1/2 + \epsilon' \gamma} e^{\epsilon \alpha x} u(x) \]
where \(u(x) \) is some series. We will find that if
\[\frac{1}{2} + \epsilon' \gamma + N \equiv -\epsilon \beta \]
then the series will truncate. It is most important (necessary) for truncation that \(N \) be an integer. Putting Eq. (2.9) in Eq. (2.5) we get
\[u'' + 2\left(\epsilon \alpha + \frac{1}{2} + \epsilon' \gamma \right) u' + \frac{2\epsilon \alpha (\epsilon \beta + \frac{1}{2} + \epsilon' \gamma)}{x} u = 0. \]

Now let
\[u = \sum_n a_n x^n \]
so that we get the following recurrence relation
\[(n + 1) na_{n+1} + 2\epsilon \alpha (\frac{1}{2} + \epsilon \beta + \epsilon' \gamma) a_n + (\frac{1}{2} + \epsilon' \gamma) (n + 1) a_{n+1} + 2\epsilon \alpha n a_n = 0. \]

Truncation occurs if there exists an \(N \) such that
\[a_{n+1} \equiv 0 \]
which is implied by Eq. (2.10).

Let us operate on \(x^*(\text{Eq. (2.11)}) \) \(n \) times with \(\frac{d}{dx} \). We will get
\[\left(\left(x \frac{d^2}{dx^2} + 2\left(\epsilon \alpha x + \frac{1}{2} + \epsilon' \gamma + \frac{1}{2} n \right) \frac{d}{dx} + 2\epsilon \alpha \left(\epsilon \beta + \frac{1}{2} + \epsilon' \gamma \right) + 2\epsilon \alpha n \right) \frac{d^n}{dx^n} \right) u = 0 \]
Note that this equation is always second order in the \(n^{th} \) derivative, and that when \(\epsilon \beta + \frac{1}{2} + \epsilon' \gamma \) is a negative integer \(-N\), then one solution for \(\frac{d^N u}{dx^N} \) is a constant (i.e., gives the truncating solution). Also, from Eq. (2.15) we see that \(\frac{d^n}{dx^n} \) acting on \(u \) is a shift (cf. raising or lowering) operator, with the action
\[\gamma \rightarrow \epsilon' \gamma + \frac{\epsilon' n}{2}, \beta \rightarrow \epsilon' \beta + \frac{\epsilon n}{2}. \]
In Quantum Mechanics, Eq. (2.7) arises for the (spin-weighted) spherical harmonics with
\[
\alpha = \ell + \frac{1}{2} \\
\beta = \frac{1}{2}(s - m) \\
\gamma = \frac{1}{2}(s + m),
\]
and Eq. (2.5) arises for the Coulomb (radial) wave functions, with bound state occurrence being given by a condition for truncating solutions.

From Eq. (2.7) let us now pull out the factor
\[
z = x^{\frac{1}{2} + \epsilon' \beta} (x - 1)^{\frac{1}{2} + \epsilon'' \gamma} u(x)
\]
then (after several lines of algebra) we will find the condition for truncation is:
\[
\frac{1}{2} + \epsilon' \beta + \frac{1}{2} + \epsilon'' \gamma + N = \frac{1}{2} + \epsilon \alpha.
\]
In general, we find that \(\frac{d^k u}{dx^k} \) gives rise to a solution of Eq. (2.5) with \(\beta \rightarrow \beta + \epsilon' \frac{k}{2}; \gamma \rightarrow \gamma + \epsilon'' \frac{k}{2} \).

Raising and lowering operator characteristics are determined entirely by techniques considered above.
III. RECURRENCE RELATIONS

In general, a recurrence relation has the form

\[\ddot{y} = \alpha(x)y + \beta(x) \frac{\partial y}{\partial x}. \] (3.1)

We want to devise a method, in principle, for understanding why recurrence relations exist and what characterizes their behaviour.

Rewrite Eq. (3.1) as

\[\ddot{y} = \beta \left(\frac{\partial}{\partial x} + \frac{\alpha}{\beta} \right) y, \] (3.2)

or alternatively

\[\ddot{y} = B \frac{\partial}{\partial x} Ay. \] (3.3)

In the simplest recurrence relation for Eq. (2.5) above we would have

\[\frac{\alpha}{\beta} \sim \mu + \frac{\lambda}{x}, \] (3.4a)

and for Eq. (2.7)

\[\frac{\alpha}{\beta} \sim \frac{\sigma}{x} + \frac{\tau}{x - 1}. \] (3.4b)

Then we would have

\[A(x) = e^{\mu x} x^\lambda \text{ or } x^\sigma (x - 1)^\tau \] (3.5)

as given by the constructions indicated in the previous section.

Consider the two equations

\[(\partial_{xx} + q(x))y = 0 \] (3.6a)
\[(\partial_{xx} + Q(x))z = 0. \] (3.6b)

We want to seek \(\alpha, \beta \) (which truncate) such that

\[y = \alpha z + \beta z'. \] (3.7)

Let Eq. (3.6a–b) be anything we wish to write down. Suppose that two linearly independent solutions \(y_1, y_2 \) exist for Eq. (3.6a). Also, let the same be true for \(z_1, z_2 \) of Eq. (3.6b). A possible, but not useful, situation is when Eq. (3.7) would map \(z_1 \rightarrow y_1 \) but would permit \(z_2 \rightarrow \) anything, e.g.,

\[y_1 = \left(f(x) \left(\partial_x - \frac{z'_1}{z_1} \right) \right) + \frac{y_1}{z_1} z_1. \] (3.8)
However, \(f(x) \) has no restrictions so that Eq. (3.8) is not very useful – it is too general.

Consider the equations
\[
y_1 = \alpha z_1 + \beta z_1' \\
y_2 = \alpha z_2 + \beta z_2'.
\]

The solutions for \(\alpha \) and \(\beta \) are
\[
\alpha = \frac{-z_1'y_2 - z_2'y_1}{W(z_1, z_2)} \\
\beta = \frac{z_1y_2 - z_2y_1}{W(z_1, z_2)}.
\]

where \(W(,\) \) is the Wronskian. In general there exists an inverse map
\[
z = \frac{1}{k}(\alpha + \beta')y - \beta y'
\]

where
\[
k = \frac{W(y_1, y_2)}{W(z_1, z_2)} = \text{constant}.
\]

Thus our mapping and its inverse exists and is unique for the Eqs. (3.6a,b). Now
\[
(\partial_{xx} + q(x)) = \left(\partial_x + \frac{\alpha + \beta'}{\beta}\right) \left(\partial_x - \frac{\alpha + \beta'}{\beta}\right) + \frac{k}{\beta^2}
\]
\[
(\partial_{xx} + Q(x)) = \left(\partial_x - \frac{\alpha}{\beta}\right) \left(\partial_x + \frac{\alpha}{\beta}\right) + \frac{k}{\beta^2}.
\]

Thus
\[
q = \frac{k}{\beta^2} - \left(\frac{\alpha + \beta'}{\beta}\right) - \left(\frac{\alpha + \beta'}{\beta}\right)^2
\]
\[
Q = \frac{k}{\beta^2} + \left(\frac{\alpha}{\beta}\right)' - \left(\frac{\alpha}{\beta}\right)^2.
\]

When \(\beta \) is a constant we get the simplest examples of “raising” and “lowering” type of operators.

If we choose our mapping as
\[
z_1 \to ay_1 + by_2 \\
z_2 \to cy_1 + dy_2
\]
such that \(ad - bc \neq 0 \), then for \(b = c = 1, a = d = 0, \)
\[
\beta = \frac{y_1z_1 - y_2z_2}{W}.
\]
We find that there are four linearly independent \(\beta \)'s. It is not always clear, however, which \(\beta \) to pick, or that any useful choice is available.

Look at
\[
\beta^2 (\partial_{xx} + q) = (\beta \partial_x + \alpha)(\beta \partial_x - \alpha - \beta') + k \tag{3.17a}
\]
\[
\beta^2 (\partial_{xx} + Q) = (\beta \partial_x - \alpha - \beta')(\beta \partial_x + \alpha) + k \tag{3.17b}
\]
where for Eqs. (3.17a,b) define
\[
A = (\beta \partial_x + \alpha) \tag{3.18a}
\]
\[
B = (\beta \partial_x - \alpha - \beta') \tag{3.18b}
\]
so that
\[
[A, B] \neq 0 . \tag{3.19}
\]

Notice that
\[
B(AB + k) = (BA + k)B \tag{3.20a}
\]
\[
A(BA + k) = (AB + k)B . \tag{3.20b}
\]

Note that, for the operators multiplied by \(\beta^2 \), \(k \) simply represents a shift in the eigenvalues (spectrum) of the operators \(AB \) and \(BA \): this \(\beta^2 \) has really changed us to quite new operators and knowing the zeros of \(\beta \) is very important.
For simplicity, consider a case of the whole interval \((-\infty, \infty)\). Suppose that the behaviour of \(y\) in Eq. (3.6a) is

\[
y_1 = \lim_{x \to -\infty} e^{i\omega x} = \lim_{x \to -\infty} (Ae^{i\omega x} + Be^{-i\omega x}) \tag{0.1a}
\]

\[
y_2 = \lim_{x \to -\infty} e^{-i\omega x} = \lim_{x \to -\infty} (Ce^{i\omega x} + De^{-i\omega x}) \tag{0.1b}
\]

and similarly for \(z\) in Eq. (3.6b). Then \(\beta\) will have the form as \(x \to -\infty\)

\[
\beta = ay_1z_1 + by_1z_2 + cy_2z_1 + dy_2y_2 \\
\simeq e^{-2i\omega x} + \text{const} + \text{const} + e^{2i\omega x}. \tag{0.2}
\]

To avoid a \(\beta\) which oscillates, one would choose \(a = d = 0\). Now, as \(x \to \infty\), \(\beta\) will have the form

\[
\beta = b(Ae^{i\omega x} + Be^{-i\omega x})(Ce^{i\omega x} + De^{-i\omega x}) + c(Ce^{i\omega x} + De^{-i\omega x})(\tilde{A}e^{i\omega x} + \tilde{B}e^{-i\omega x}) \tag{0.3}
\]

where the tildes are associated with solutions \(z_1, z_2\) of \(z\) for Eq. (3.6b). Similarly, we require, at \(\pm\infty\),

\[
bA\tilde{C} + cC\tilde{A} = 0, \tag{0.3a}
\]

\[
bB\tilde{D} + cD\tilde{B} = 0. \tag{0.3b}
\]

This keeps our solutions from oscillating at \(x \to \pm\infty\). Therefore

\[
\frac{b}{c} = -\frac{C\tilde{A}}{A\tilde{C}} = -\frac{D\tilde{B}}{B\tilde{D}} \tag{0.4}
\]

and

\[
\frac{CB}{AD} = \frac{\tilde{C}\tilde{B}}{\tilde{A}\tilde{D}}. \tag{0.5}
\]

Looking at

\[
1 - \frac{CB}{AD} = \frac{1}{AD} = \frac{1}{\tilde{A}\tilde{D}} \tag{0.6}
\]

where, in this case, \(k = 1\). This implies

\[
AD = \tilde{A}\tilde{D} \tag{0.7}
\]

\[
BC = \tilde{B}\tilde{C}. \tag{0.8}
\]
These conditions help to imply that A, \tilde{A} must have the same zeros (poles) and B, \tilde{B} have the same zeros (poles); i.e., that the singular points of the scattering data correspond. Otherwise, b or c would be zero and this would mean that z_1, z_2 would map to the same function y. Thus, for β to be non-oscillatory (it is useless otherwise) we must have, at least, that the singular points of the scattering data correspond. This is in fact a very restrictive condition on q, Q in Eq. (3.6a, 3.6b), so that useful recurrence relations can occur only in special situations. However, precisely these situations can arise in the use of inverse scattering techniques to solve non-linear (completely integrable) evolution equations, which can give multi-parameter potentials (i.e., q, Q) for linear equations with trivially related scattering data.

Finally, recall Eq. (3.13b)

$$(\partial_{xx} + Q(x)) = \left(\partial_x - \frac{\alpha}{\beta} \right) \left(\partial_x + \frac{\alpha}{\beta} \right) + \frac{k}{\beta^2}.$$

When $k = 0$ we know we have a solution. Once we have this solution we can get all the solutions for y and z. Similarly, once we have only two solutions β, we can solve for everything (even though β can be shown to satisfy a fourth order differential equation!).