1. Show that

\[e^\Omega = \lim_{n \to \infty} \left(1 + \frac{1}{n} \Omega \right)^n \]

where \(\Omega \) is a linear operator.

2. Show that if \(U \) is a linear operator on a vector space \(V \) and if for all vectors \(V \in V \)

\[<V'|V> = <V|V> \]

where \(|V'> = U|V> \), then \(U \) must be a unitary operator on \(V \).

3. If \(X \) and \(P \) are canonically conjugate observables, we have \(X = X^\dagger \), \(P = P^\dagger \) and \([X, P] = \hbar i \). Using these equations, show that

a. \([X, F(P)] = \hbar i \frac{dF}{dP} \), where \(F(P) \) is any function of the operator \(P \).

b. \(<x|P^n|\Psi> = \left(\frac{1}{i} \right)^n \frac{d^n}{dx^n} <x|\Psi> \) where the \(|x> \) are the eigenstates of \(X \).

c. \(<x|p> = Ne^{ixp/\hbar} \) where the \(|p> \) are the eigenstates of \(P \) and \(N \) is a normalization constant.