Magnetism of Two-Dimensional Films of 3He on Highly Oriented Graphite

H.M. Bozler, Jinshan Zhang, Lei Guo, Yuliang Du, and C.M. Gould

Dept. of Physics and Astronomy, Univ. of Southern California, Los Angeles, CA 90089-0484, USA

What is the effect of the structural length scale on the ordering of 3He films? NMR experiments on the magnetism of second layer 3He on Grafoil in the low field limit found ferromagnetic ordering for coverages over 20 atoms/nm2. Finite temperature phase transitions are prohibited in 2D when only Heisenberg interactions are present. However ordering of a two-dimensional magnetic film can be a result of a phase transition caused by weak anisotropy and/or dipolar interactions, or could be a less interesting manifestation of finite size effects. By replacing Grafoil with ZYX grade highly oriented graphite we can study the magnetism of two-dimensional films with a substantially increased structural coherence length and test the importance of finite size effects. Our new experiments find a region of coverages where the second layer 3He films become ferromagnetic at temperatures above 1 mK, with no evidence for an increased suppression of the ordering due to increasing the coherence length. We show the results for the magnetism at a wide range of coverages as well as the effect of varying the magnetic field in the ferromagnetic cases. Our results support the interpretation in terms of a phase transition occurring at finite temperature.

*Supported by NSF through grant DMR-0307382

Sorting category: Ad Quantum gases, fluids and solids

Keywords: magnetism, NMR, He-3, 2-D

LT1265