Andreev Spectroscopy on the Heavy Fermion Superconductor CeCoIn$_5$*

J.Y.T. Weia, C.S. Turela, P.M.C. Rourkea, and C. Petrovicb

aDepartment of Physics, University of Toronto, ON M5S1A7, Canada
bDepartment of Physics, Brookhaven National Laboratory, NY 11973, USA

Recently, several unconventional pairing characteristics have been reported in the heavy fermion superconductor CeCoIn$_5$. First, there is evidence for k-space nodes in the superconducting order parameter (OP). Second, there is also evidence for a field-induced Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state2,3, with the OP acquiring either real-space nodes or finite momentum. Andreev reflection provides a direct, spectroscopic means for probing these unconventional pairing states, because it is inherently sensitive to the phase, amplitude and momentum of the OP. We present an Andreev spectroscopy study of CeCoIn$_5$, using point-contact junctions on single-crystal samples measured down to 150 mK in temperature and up to 12 Tesla in field. The data is analyzed with the generalized Blonder-Tinkham-Klapwijk formalism4, for spectroscopic evidence on both d-wave pairing symmetry and the FFLO state.

*Work supported by: NSERC, CFI/OIT, MMO/EMK and the CIAR; Division of Materials Sciences, Office of Basic Energy Sciences, and US Department of Energy under Contract No. DE-AC02-98CH10886.

Sorting category: Bb Superconductivity

Keywords: Andreev reflection, heavy fermion, superconductivity, d-wave, FFLO

LT2468