Muon Trigger Electronics in the Counting Room

Darin Acosta

DOE/NSF Review
February 18, 1999
Overview of System Design
 • Evolution since May 98 Lehman Review
Issues Concerning CSC/DT Interface
Progress
Plans
Muon Track-Finding

Link trigger primitives into tracks
Assign P_T, φ, and η
Send highest P_T candidates to Global L1
CSC Track-Finder

Requirements

High efficiency

Trigger Rate:
- Single muon rate < few kHz at \(L = 10^{34} \text{cm}^{-2} \text{s}^{-1} \)

Resolution:
- \(\sigma_{P_t} / P_t \leq 30\% \) (Requires \(\eta \) information)

Selection:
- \(\leq 3 \) muons per 60° sector

Redundancy
- Require only 2 stations out of 3 (or 4)

Minimal latency, pipelined, programmable
• Single μ rate from Pythia, convoluted with efficiency curve

• Thresholds set for 90% efficiency

• Require rates < 1 kHz per unit rapidity

• Not satisfied for P_T resolution worse than 30%
Trigger Regions in ϕ

Illustration of overlap region

- ME1/3
- MB2/2
- MB2/1
Overlap Region Issues

- CSC and DT segments are required for efficient coverage of $0.9 < |\eta| < 1.2$
- Agreement with Vienna and Bologna on Barrel/Endcap boundary
 - Barrel and Endcap Track-Finders are fundamentally different (2D vs. 3D)
 - Information sent both ways
 - MB2/1+MB2/2 \Rightarrow CSC T-F ME1/3+ME2/2 \Rightarrow DT T-F
- Programmable sharp η boundary
 - Avoids duplication of single muon in overlap region
- Separate sorting of CSC and DT muons
Sector Partitioning for ME1 has Changed

- **30° → 20° sectors**
- **2 → 3 MPC**
- **3 → 2 µ / MPC**

Accommodates split of ME1/1 into two regions

ME2 and ME3 60° sectors are unchanged

MPC and SR designs preserved
Sector Receiver Functionality

- Receives 6 μ segments via 12 optical links from 2 Muon Port Cards (3 in ME1)
- Synchronizes the data
- Reformats the data
 - LCT bit pattern $\rightarrow \eta, \varphi, \Psi, ...$
- Applies alignment corrections
- Design changes since last review:
 - Communicates to Sector Processors via custom backplane (Channel Link)
 - Fans out signals to DT Track-Finder
 - No longer repeats signals to Sector Receivers in overlap crates

$\} \text{ via LUT}$
Sector Processor Functionality

- Initial system design is new since 5/98 review
 - Functional block diagram developed
 - FPGA and board partitioning started
- Identify and measure muons from ~ 600 bits every 25ns (3 GB/s)
 - Perform all possible station-to-station extrapolations in parallel
 - Simultaneously search roads in ϕ and η
 - Assemble 2-, 3- and 4-station tracks from 2-station extrapolations
 - Cancel redundant short tracks if track is 3 or 4 stations in length
 - Select the three best candidates
 - Calculate P_T, ϕ, η and send to CSC muon sorter: $22 \text{ bits } \times 3 = 66 \text{ bits}
• New processor added since last review
• The 3 highest rank muons from each Sector Processor are sent to the **CSC muon sorter**, which selects the 4 highest rank

• **Total muon count:**
 - 3 muons \(\times \) 6 sectors \(\times \) 2 endcaps \(\times \) 2 regions = 72 muons for CSC and OVL regions

• **Sort is based on 7 bits (5 bits for \(P_T \) and 2 bits for quality)**
 - Basic sorting unit design (4 best out of 8) is complete

• **Input:** 72 \(\times \) 22 bits = 1584 bits
• **Output:** 4 \(\times \) 22 bits = 88 bits
 - Sent to Global L1 Muon Trigger for association with RPC and DT triggers
Muon Sorter Block Diagram

72 Muons from 24 Sector Processors

Muon Sorter Block Diagram

RECEIVER_1
RECEIVER_2
RECEIVER_3
RECEIVER_23
RECEIVER_24

SORTING LOGIC
4 MUONS OUT OF 72

VME INTERFACE

CUSTOM BACKPLANE

FROM TTC

TO GLOBAL MUON TRIGGER

VME ADDRESS
DATA
CONTROL

TRANSMITTER_1
TRANSMITTER_2
TRANSMITTER_3
TRANSMITTER_4
Old CSC Track-Finder Crate Organization

CSC Counting House electronics:

Racks: 4
Crates: 8 (including power supply, controller, CCC)
Sector Receivers: 48
Sector Processors: 24

Three 60° sectors per crate
New CSC Track-Finder Crate Organization

CSC and overlap regions now handled in same crate

Two 60° sectors per crate

CSC Counting House electronics:

Racks: 3 or 4

Crates: 6 (was 8)

Sector Receivers: 24 (was 48)

Sector Processors: 24

Muon Sorter: 1 (new)
New Layout for CSC Track-Finder Crate

- Two 60° sectors housed in one 9U VME crate with custom backplane
- Each SR-CSC sends 6 CSC muon stubs \times 34 bits and 4 bits BXN = 208 bits
- Each DT-IM sends 8 DT muon stubs \times 25 bits and 4 bits BXN = 204 bits
Required Precision of Data

Azimuthal angle ϕ:
- 12 bits / 60° \Rightarrow 1 bit / 0.26 mrad (0.1 strip)

Bend angle Ψ:
- 6 bits / ±45° \Rightarrow 1 bit / 60 mrad

Polar angle η:
- 6 bits / 1.5 units \Rightarrow 1 bit / 0.025

Quality:
- 3 bits

Chamber i.d.:
- 6 bits

Accelerator μ flag: 1 bit

34 bits per CSC segment to Sector Processor
Track Segments per 60° Sector

<table>
<thead>
<tr>
<th>Region</th>
<th>Station</th>
<th>Chamber</th>
<th>Segments per sector</th>
<th>No. of ϕ sectors</th>
<th>No. of segments</th>
<th>Extrapolations</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td>1</td>
<td>ME1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ME2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>ME3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4*</td>
<td>ME4*</td>
<td>3*</td>
<td>1*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12, 15*</td>
<td></td>
</tr>
<tr>
<td>OVL</td>
<td>1</td>
<td>MB1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MB2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>ME1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>ME2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Segments sent by Muon Port Cards to Sector Receivers via optical links.

Processed by Sector Processor
Design Progress

• Full conceptual design from trigger primitives to Global L1 Trigger
 • Bit counts fully documented
 • Crate design underway
 • Sector Receiver functionality defined
 • Sector Processor algorithms defined
 • Sort algorithms defined
• Simulation of Track-Finder performance underway
 • resolution, efficiency, rate, chamber misalignment
• Prototyping started
Milestones / Schedule

√ D387 – 1999 Mar, Sector Receiver Initial System Design
√ D331 – 1999 Mar, Sector Processor Initial System Design

D390 – 1999 Sep, Sector Receiver Prototype Design
D332 – 1999 Sep, Sector Processor Prototype Design started

D391 – 2000 Jan, Sector Receiver Prototype
D334 – 2000 Jan, Sector Processor Prototype
D335 – 2000 Apr, Sector Receiver / Processor Crate Test

tests to do:

MPC → SR optical link test

2 × SR + SP + CCC crate test

3 × MPC + 2 × SR + SP + CCC sector test