Towards A Unified Track-Finder Processor

Darin Acosta
University of Florida
Generalize scheme to include η dependence of matching and Pt-assignment in endcap and overlap regions
Number of Extrapolation Units

Per Sector Processor

<table>
<thead>
<tr>
<th></th>
<th>DT</th>
<th>CSC</th>
<th>Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector size</td>
<td>30°</td>
<td>60°</td>
<td>60°(30°)</td>
</tr>
<tr>
<td>Number of stations</td>
<td>4</td>
<td>3 (4)</td>
<td>3 / 4</td>
</tr>
<tr>
<td>Number of extrapolation pairs</td>
<td>6</td>
<td>3 (6)</td>
<td>3 / 6</td>
</tr>
<tr>
<td>(1↔2, 1↔3, 2↔3, ...)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source track segments / station</td>
<td>2</td>
<td>3</td>
<td>2 / 3</td>
</tr>
<tr>
<td>Target track segments / station</td>
<td>12 (18)</td>
<td>3</td>
<td>3 ?</td>
</tr>
</tbody>
</table>

Number of extrapolation units:

- **DT:** 6 (or 9) neighbors in φ and η
 - No φ sharing
 - 144 (216)
 - 48 (72)

- **CSC:** 3 (4) stations, no φ sharing
 - 27(54)

- **Overlap:** no φ sharing
 - 18-54+
Inputs to a Single Pairwise Extrapolation Unit

<table>
<thead>
<tr>
<th></th>
<th>DT</th>
<th>CSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ</td>
<td>11 bits / 30°</td>
<td>12 bits / 60°</td>
</tr>
<tr>
<td>$d\varphi$</td>
<td>8 bits</td>
<td>6 bits</td>
</tr>
<tr>
<td>η</td>
<td>2 bits</td>
<td>11 bits</td>
</tr>
<tr>
<td>Quality</td>
<td>2 bits</td>
<td>3 bits</td>
</tr>
</tbody>
</table>
Block Diagram of Extrapolation Unit

Δφ calculation

η correlation

η, Δφ correlation

Quality correlation & assignment

Q₁ 3
Q₂ 3

Δφ₁₂ 6-8

Δφ₁

Δφ₂ 6-8

η₁ 11
η₂ 11

η 8?

&

φ

z
Φ Extrapolation (dφ, Δφ Correlation)

⇒ Checks consistency between Δφ and dφ
η Extrapolation

η_1 <11 η_2 <11 η LUT η

\Rightarrow Need to determine necessary η precision for remaining correlations
$\eta, \Delta \phi$ Correlation Unit

$\Delta \phi_{12} \sim 8 \quad \eta \sim 8 \quad \text{LUT} \sim 8 \quad <$

\Rightarrow Limits $\Delta \phi$ as function of η

\Rightarrow Not needed for barrel region, where B is independent of η

\Rightarrow Need to determine necessary η precision
Quality Assignment and Correlation

\[Q_1 \rightarrow \text{LUT} \rightarrow Q_{12} \]

\[Q_2 \rightarrow \text{LUT} \rightarrow Q_{12} \]

⇒ Need to define criterion
Features and Limitations

- Trigger logic is tunable
 - Content of memory LUT is programmable
 - Any correlation unit can be set to accept all inputs
 - For example, turn off η correlation for barrel region

- FPGA technology allows flexibility in logic design

- Design hopefully evolves into the same hardware for barrel, overlap, and endcap regions

- Neighboring ϕ sectors are not explicitly handled unless one copes with the additional number of extrapolation units and signal inputs

- Multiple hits in a single CSC chamber are not tested for ghosts (2 track segments \rightarrow 4). Requires more extrapolation units
Further Study

- Minimize η precision for $\Delta \phi$, η correlation
 - Reduces LUT sizes
 - Simplifies η determination for ME1/1 (tilted wires)

- Useful to have backward ϕ extrapolation ($2 \to 1$) ?

- Any problem from ghost hits in single chamber ?

- What is criterion for track quality assignment ?