1. One end of a uniform 7.0 m long rod of weight \(w \) is supported by a cable. The other end rests against the wall, where it is held by friction. The coefficient of static friction between the wall and the rod is \(\mu_s = 0.50 \). Determine the minimum distance, \(x \), from point A at which an additional weight \(w \) (the same as the weight of the rod) can be hung without causing the rod to slip at point A.

Let \(T \) be the tension in the cable and \(N \) the normal force at the wall, with friction given by \(F_R \leq \mu_s N \). Then:

\[
F_x : \quad N - T \cos(\theta) = 0 \\
F_y : \quad T \sin(\theta) + F_R - 2 \times w = 0, \quad \text{and} \\
\tau : \quad T \times L \sin(\theta) - w \times \frac{L}{2} - w \times x = 0,
\]

where torque has been calculated around point A. From the first two equations we have:

\[
2 \times w = T \sin(\theta) + F_R \leq T \sin(\theta) + \mu_s \times T \cos(\theta) \implies T \sin(\theta) \geq \frac{2 \times w}{1 + \mu_s \times \cot(\theta)},
\]

while from the third equation we find

\[
T \sin(\theta) = w \times \left(\frac{1}{2} + \frac{x}{L} \right).
\]

Putting these together we have

\[
x \geq L \left(\frac{2}{1 + \mu_s \times \cot(\theta)} - \frac{1}{2} \right) = 7.0 \times \left(\frac{2}{1 + 0.50 \times 1.327} - \frac{1}{2} \right) = 4.9 \text{ m}.
\]

2. A planet of radius \(8.00 \times 10^3 \) km spins with an angular velocity of \(20.0 \times 10^{-5} \) rad/s about an axis through the North Pole. What is the ratio of the normal force experienced by a person at the equator to that experienced by a person at the North Pole? Assume a constant gravitational acceleration of 1.60 m/s\(^2\) and that both people are stationary relative to the planet and are at sea level.

At the North Pole we have \(N_{NP} - mg = 0 \implies N_{NP} = mg \), while at the equator we have \(N_{eq} - mg = -m\omega^2 R \implies N_{eq} = mg - m\omega^2 R \). Thus the ratio \(N_{eq}/N_{NP} \) is given by:

\[
\frac{N_{eq}}{N_{NP}} = 1 - \frac{\omega^2 R}{g} = 1 - \frac{(2.00 \times 10^{-4})^2 \times 8.00 \times 10^6}{1.60} = 1.000 - 0.200 = 0.800.
\]