1. A particle following an orbit characterized by a conserved energy $E > 0$ and a conserved angular momentum ℓ scatters in a potential $U(r)$ that goes to zero as $r \to \infty$. Write the energy as $E = \frac{1}{2} \mu v^2$ (this defines v) and write $\ell = \mu \nu b$ (defines b).

(a) Starting from an expression derived in class or an expression in the text, write the deflection angle from closest approach r_0 to $r \to \infty$ as an integral over the variable $x = b/r$ (this x is not the Cartesian position x).

(b) Evaluate your integral for the hard sphere potential, $U = 0$ for $r > a$ and $U = \infty$ for $r < a$. Compute the relation between the scattering angle θ (the difference between incoming and outgoing directions) and the impact parameter b. Compute the differential scattering cross section $d\sigma/d\Omega$.

(c) Evaluate your integral for the Coulomb potential $U = -K/r$. Compute the relation between the scattering angle θ (the difference between incoming and outgoing directions) and the impact parameter b. Compute the differential scattering cross section $d\sigma/d\Omega$.

2. Two galaxies collide at a relative speed $v_0 = 1000 \text{ km s}^{-1}$. A star of mass $m = 1 M_\odot$ in galaxy A has an encounter with a black hole of mass $M = 10^6 M_\odot$ at the center of galaxy B. Before the collision m is bound to its galaxy with an escape velocity $v_{\text{esc}} = 300 \text{ km s}^{-1}$. What are the conditions on v_0 and b such that after the collision m is kicked out of its galaxy? If galaxy A contains 10^{11} stars distributed more or less uniformly within a diameter of $30 h^{-1}$ kpc, how many of them are kicked out in the encounter?

(Bonus) Let $U(r)$ be the truncated Coulomb potential
\[
U(r) = \begin{cases}
-\frac{K}{r} + \frac{K}{c} & (r < c), \\
0 & (r > c).
\end{cases}
\]

For an orbit characterized by v and b, find the closest approach r_0. Find the relation between θ and b ($r_0 > c$ is different from $r_0 < c$). Compute the differential scattering cross section $d\sigma/d\Omega$ and total cross section σ.