1. A potential $\Phi(\rho, \phi, z)$ satisfies $\nabla^2 \Phi = 0$ in the volume $V = \{z \geq 0\}$ with boundary condition $\partial \Phi/\partial n|_S = F_S(\rho, \phi)$ on the surface $S = \{z = 0\}$.

(a) Write the Neumann Green’s function $G_N(\mathbf{x}, \mathbf{x}')$ within V in cylindrical coordinates ρ, ϕ, z (and ρ', ϕ', z'). Evaluate G and its normal derivative $\partial G/\partial n'$ for \mathbf{x}' on S.

(b) For zero charge density and with boundary condition $F_S = E_0$ (constant) within the circle $\rho < a$ and zero outside, find the potential on the z-axis. Compare the limit $z \to 0$ of your solution with the given boundary condition.

(c) Find the first two nonvanishing terms in the potential for $r = \sqrt{\rho^2 + z^2} \gg a$. Compare with (b) where the two overlap. What is the charge inferred from the large-r potential?

2. A potential $\Phi(r, \theta, \phi)$ satisfies $\nabla^2 \Phi = -\rho/\varepsilon_0$ in the volume $V = \{r \geq a\}$ with boundary condition $\Phi|_S = V_S(\theta, \phi)$ specified on the surface $S = \{r = a\}$.

(a) Write the Dirichlet Green’s function $G_D(\mathbf{x}, \mathbf{x}')$ within V and its normal derivative $\partial G/\partial n'$ for \mathbf{x}' on S in spherical coordinates r, θ, ϕ (and r', θ', ϕ').

(b) If the charge density vanishes, find Φ on the z-axis for $V_S = V_0 \sin^2 \theta$.

(c) Find Φ far from the sphere, $r \gg a$. Compare with (b) where the two overlap. What is the charge inferred?