Consider a system, composed of N classical spins, which is in thermal equilibrium with a heat reservoir at temperature T, and which is subjected to a uniform magnetic field of strength H. The spins are distinguishable and independent of one another. Each spin has precisely three possible orientations, directed at angles $\theta = 0, \pm 2\pi/3$ to the direction of the magnetic field. The magnetic energy of each spin is $\epsilon(\theta) = -\mu H \cos \theta$, where μ is the magnetic moment, a (known) constant.

(a) Write down the partition function for this system. Neglect all non-magnetic degrees of freedom, i.e., just take into account the magnetic energy for each spin.

(b) Calculate the Helmholtz free energy F of the system.

(c) The total magnetic energy of the system can be written $E_{\text{mag}} = -MH$, where M is the magnetization. Calculate M by using the total differential $dF = -SdT - MdH$.

(d) Derive the limiting forms for M in the limits $k_B T \ll \mu H$ and $k_B T \gg \mu H$. In each case, include the leading nonvanishing dependence on both T and H.

(e) Sketch M as a function of H at fixed T. You should pay special attention to getting the low-field and high-field limits qualitatively correct.