1. Consider four possible quantizations of the classical dynamical variable \(\omega = x^2p^2 \):

- \(\Omega_1 = x^2p^2 \)
- \(\Omega_2 = p^2x^2 \)
- \(\Omega_3 = \frac{1}{2}(x^2p^2 + p^2x^2) \)
- \(\Omega_4 = \frac{1}{4}(xp + px)^2 \)

Use the commutation relation between \(X \) and \(P \) to simplify as much as possible

(a) \(\Omega_1 - \Omega_2 \)
(b) \(\Omega_1 - \Omega_3 \)
(c) \(\Omega_2 - \Omega_4 \)

Here, simplification means expressing the result in terms of the lowest possible powers of the operators \(X \) and \(P \). Also, you should express each terms in such a way that any residual \(X \) operators are placed to the left of any \(P \) operators.

2. Based on Ballentine Problem 2.9: Let \(R = \begin{pmatrix} 6 & -2 \\ -2 & 9 \end{pmatrix} \) be a representation of the operator \(R \) corresponding to some dynamical variable \(r \), and \(|\psi\rangle = \begin{pmatrix} a \\ b \end{pmatrix} \) be an arbitrary, normalized state vector (with \(|a|^2 + |b|^2 = 1 \)). Suppose that \(f(R) \) is some function of \(R \). It is possible to calculate \(\langle f(R) \rangle \) in two ways: (i) Evaluate \(\langle f(R) \rangle = \langle \psi | f(R) | \psi \rangle \) directly. (ii) Find the eigenvalues and eigenvectors of \(R \), \(R|r_n\rangle = r_n|r_n\rangle \), expand the state vector as a linear combination of the eigenvectors, \(|\psi\rangle = c_1|r_1\rangle + c_2|r_2\rangle \), and evaluate \(\langle f(R) \rangle = f(r_1)|c_1|^2 + f(r_2)|c_2|^2 \).

(a) Use both methods (i) and (ii) to evaluate \(\langle R \rangle \).
(b) Use both methods (i) and (ii) to evaluate \(\langle R^2 \rangle \).
(c) Find the uncertainty \(\Delta R \).

3. Shankar Exercise 4.2.1. As Shankar says, this exercise is very important. Therefore, it will be graded even though the answers are given in the book.