non-holonomic constraint

Goldstein:

\[f(q, \dot{q}) \]

\[S = \int_{t_1}^{t_2} \left[L + \lambda(t) f(q, \dot{q}) \right] dt \]

\[\delta S = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} + \delta \lambda f \right] dt \]

by path

\[= \int_{t_1}^{t_2} \left[\left(\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} + \lambda \frac{\partial f}{\partial q} - \frac{d}{dt} \left(\lambda \frac{\partial f}{\partial \dot{q}} \right) \right) \delta q \right. \]

\[+ \delta \lambda f \left. \right] dt = 0 \]

\[\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} + \lambda \frac{\partial f}{\partial q} - \frac{d}{dt} \left(\lambda \frac{\partial f}{\partial \dot{q}} \right) = 0 \]

\[f = 0 \]

\[\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} + \lambda \frac{\partial f}{\partial q} - \lambda \frac{\partial f}{\partial \dot{q}} - \frac{d}{dt} \frac{\partial f}{\partial q} = 0 \]

1st order differential equation for \(\lambda \) \(\Rightarrow \) need \(\dot{q}(0) \)

\(\lambda \) is a force \(\Rightarrow \) need to know acceleration at \(t=0 \)

Contradiction with the general principle of CM:

a trajectory is uniquely determined by specifying \(q(0) \) and \(\dot{q}(0) \). No initial acceleration is needed.
Variational principle works only for a special class of non-holonomic constraints
\[f(q) = A(q) \dot{q} \] (Pfaffian)

\[\lambda \frac{\partial L}{\partial \dot{q}} - \dot{\lambda} \frac{\partial L}{\partial q} = \lambda \frac{\partial A(q)}{\partial \dot{q}} - \dot{\lambda} \frac{\partial A(q)}{\partial q} \]

\[= \lambda \frac{\partial A(q)}{\partial \dot{q}} - \dot{\lambda} A(q) - \dot{\lambda} \frac{\partial A(q)}{\partial q} + \frac{\partial A(q)}{\partial q} \dot{q} \]

\[= \dot{\lambda} A(q) = \mu A(q) \]

\[\dot{\lambda} = \text{total time derivative} = \mu \]

\[\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = -\mu A(q) \]

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \mu A(q) = \mu \frac{\partial A(q)}{\partial q} \]

Only for \[f(q) = A(q) \dot{q} \]

Generalization for an arbitrary set of Pfaffian constraints is trivial

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \sum_{i} \mu_{a} A_{a} = \sum_{a=1}^{k} \frac{\partial L}{\partial q_{a}} \]