1. Consider a particle of mass m which is constrained to move on the surface of a sphere of radius R. There are no external forces of any kind on the particle.
 a) Derive the Hamiltonian of the particle. Is it conserved? [15 points]
 b) Using the Hamiltonian equations of motion, prove that the motion of the particle is along a great circle of the sphere. [15 points]
 NB: A great circle on a sphere is a circle on the sphere’s surface whose center is the same as the center of the sphere.

2. *Goldstein*, Problem 10.5. [30 points]

3. A tennis ball of mass m is bouncing off the floor. The total energy of the ball is E. The ball is moving strictly along the vertical. The collision between the ball and the floor is perfectly elastic.
 a. Derive the action-angle variables for the tennis ball and determine the period of motion. [30 points]
 b. Suppose that the tennis ball is a quantum-mechanical object. Using the results of part [a], surmise the dependence of the quantized energy levels on the level number. [10 points]