1. Consider a particle of mass m which is constrained to move on the surface of a sphere of radius R. There are no external forces of any kind on the particle.

a) Derive the Hamiltonian of the particle. Is it conserved? [15 points]

b) Using the Hamiltonian equations of motion, prove that the motion of the particle is along a great circle of the sphere. [15 points]

NB: A great circle on a sphere is a circle on the sphere’s surface whose center is the same as the center of the sphere

Solution:

\[
\begin{align*}
 x &= R \sin \theta \cos \phi \\
 y &= R \sin \theta \sin \phi \\
 z &= R \cos \theta \\
 \dot{x} &= R \left(\dot{\theta} \cos \theta \cos \phi - \sin \theta \dot{\phi} \sin \phi \right) \\
 \dot{y} &= R \left(\dot{\theta} \cos \theta \sin \phi + \sin \theta \dot{\phi} \cos \phi \right) \\
 \dot{z} &= -R \dot{\theta} \sin \theta
\end{align*}
\]

The Lagrangian

\[
L = T = \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) = \frac{mR^2}{2} \left(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta \right).
\]

Moments

\[
\begin{align*}
 p_\theta &= \frac{\partial L}{\partial \dot{\theta}} = mR^2 \dot{\theta} \\
 p_\phi &= \frac{\partial L}{\partial \dot{\phi}} = mR^2 \dot{\phi} \sin^2 \theta
\end{align*}
\]

The Hamiltonian

\[
H = \dot{\theta} p_\theta + \dot{\phi} p_\phi - L = \frac{p_\theta^2}{2mR^2} + \frac{p_\phi^2}{mR^2 \sin^2 \theta}
\]

H does not depend on $\phi \rightarrow p_\phi$ is conserved

\[
\dot{p}_\phi = -\frac{\partial H}{\partial \phi} = 0.
\]

By a suitable choice of the initial conditions, p_ϕ can always be made equal to zero. e.g., starting the motion at $\theta = 0$. Velocity

\[
\begin{align*}
 \dot{\phi} &= \frac{\partial H}{\partial p_\phi} = \frac{p_\phi}{mR^2 \sin^2 \theta} = 0 \\
 mR^2 \dot{\phi} \sin^2 \theta &= 0.
\end{align*}
\]

As θ cannot be equal to zero for any instant of time, we conclude that $\dot{\phi} = 0$ or $\phi = \text{const}$. This equation defines a great circle.
2. Goldstein, Problem 10.5. [30 points]

\[S = \frac{m\omega}{2} \left(q^2 + \alpha^2 \right) \cot \omega t - m\omega q \alpha \csc \omega t \]
\[= \frac{m\omega}{2} \left(q^2 + \alpha^2 \right) \frac{\cos \omega t}{\sin \omega t} - m\omega q \alpha \frac{1}{\sin \omega t} \]

Hamilton-Jacobi equation

\[H \left(p = \frac{\partial S}{\partial \dot{q}}, q \right) = \frac{1}{2m} \left[\left(\frac{\partial S}{\partial q} \right)^2 + m^2 \omega^2 q^2 \right] = -\frac{\partial S}{\partial t} \]

\[-\frac{\partial S}{\partial t} = \frac{m\omega}{2} \left(q^2 + \alpha^2 \right) \csc^2 \omega t - m\omega q \alpha \cot \omega t \csc \omega t \]
\[\frac{\partial S}{\partial q} = m\omega q \cot \omega t - m\omega \alpha \csc \omega t \]
\[\left(\frac{\partial S}{\partial \dot{q}} \right)^2 = (m\omega q \cot \omega t)^2 + (m\omega \alpha \csc \omega t)^2 - 2m^2 \omega^2 q \alpha \cot \omega t \csc \omega t \]
\[= \frac{1}{2m} \left[m^2 \omega^2 q^2 \left(\cot^2 \omega t + 1 \right) + (m\omega \alpha \csc \omega t)^2 - 2m^2 \omega^2 q \alpha \csc \omega t \right] \]
\[= \frac{1}{2m} \left[m^2 \omega^2 \left(q^2 + \alpha^2 \right) \csc^2 \omega t - 2m^2 \omega^2 q \alpha \csc \omega t \right] \]

Comparing the first and last lines, we see that they are the same.

Show that \(S \) generates a correct solution to the equations of motion:

\[p = \frac{\partial S}{\partial q} = m\omega (q \cot \omega t - \alpha \csc \omega t) \]
\[\beta = \frac{\partial S}{\partial \alpha} = m\omega (\alpha \cot \omega t - q \csc \omega t) \]

Solve the last equation for \(q = q(\alpha, \beta, t) \)

\[q = \alpha \cos \omega t - \frac{\beta}{m\omega} \sin \omega t \]
\[q_0 = q(t = 0) = \alpha \]
\[\dot{q}_0 = \dot{q}(t = 0) = \frac{\beta}{m} \]

\[p = m\omega^2 \left[\alpha \cos \omega t - \frac{\beta}{m\omega} \sin \omega t \right] \cot \omega t - \alpha \csc \omega t \]
\[= -m\omega \left[\alpha \sin \omega t + \frac{\beta}{m\omega} \cos \omega t \right] = m\dot{q} \]

3. A tennis ball of mass \(m \) is bouncing off the floor. The total energy of the ball is \(E \). The ball is moving strictly along the vertical. The collision between the ball and the floor is perfectly elastic.

a. Derive the action-angle variables for the tennis ball and determine the period of motion. [30 points]

\[E = \frac{p^2}{2m} + mgz \]
\[p = \pm \sqrt{2m(E - mgz)} \]
The action variable

\[J = \oint pdz = \int_{z_0}^{0} (-) \sqrt{2m(E - mgz)}dz + \int_{0}^{z_0} \sqrt{2m(E - mgz)}dz \]

\[= 2 \int_{0}^{z_0} \sqrt{2m(E - mgz)} = 2\sqrt{2m^2g} \int_{0}^{z_0} (z_0 - z)^{1/2} dz = \frac{4\sqrt{2}}{3}m\sqrt{g} \left(\frac{E}{mg} \right)^{3/2} \equiv CE^{3/2}, \]

where

\[z_0 = E/mg; \quad C = \frac{4\sqrt{2}}{3} \frac{1}{\sqrt{mg}}. \]

Expressing the Hamiltonian in terms of \(J \)

\[H = E = \frac{J^{2/3}}{C^{2/3}} \]

Frequency

\[\nu = \frac{\partial H}{\partial J} = \frac{2}{3C^{2/3}J^{1/3}} \]

Period

\[T = \frac{1}{\nu} = \frac{3C^{2/3}J^{1/3}}{2} = \frac{3}{2}C^{2/3}C^{1/3}E^{1/2} = \frac{3}{2}CE^{1/2} = \frac{3}{2} \frac{4\sqrt{2}}{3} \frac{1}{\sqrt{mg}}E^{1/2} \]

\[= 2\sqrt{2}E^{1/2} \frac{1}{\sqrt{mg}} \]

b. Suppose the tennis ball is a quantum-mechanical object. Using the results of part [a], surmise the dependence of the quantized energy levels on the level number. [10 points]

Assuming the naive quantization rule \(J = \hbar n \), we obtain for the energy of quantized levels

\[E_n = \frac{J^{2/3}}{C^{2/3}} = \left(\frac{3\sqrt{2}}{8} \right)^{2/3} \frac{\hbar^{2/3}n^{2/3}}{m^{1/3}}g^{2/3}. \]

The exact quantum-mechanical formula (see, e.g., S. Flugge, Practical Quantum Mechanics I, Problem 40) gives in the limit of large \(n \)

\[E_n = \left(\frac{3\pi\sqrt{2}}{8} \right)^{2/3} \frac{\hbar^{2/3}n^{2/3}}{m^{1/3}}g^{2/3}. \]

By comparing the two results, we see that the correct quantization rule must have been \(J = \pi \hbar n \). The wave-function of the problem is known as the Airy function.