A Short Simple Evaluation of Expressions of the Debye-Waller Form

N. David Mermin

Citation: J. Math. Phys. 7, 1038 (1966); doi: 10.1063/1.1704995
View online: http://dx.doi.org/10.1063/1.1704995
View Table of Contents: http://jmp.aip.org/resource/1/JMAPAQ/v7/i6
Published by the American Institute of Physics.

Additional information on J. Math. Phys.
Journal Homepage: http://jmp.aip.org/
Journal Information: http://jmp.aip.org/about/about_the_journal
Top downloads: http://jmp.aip.org/features/most_downloaded
Information for Authors: http://jmp.aip.org/authors

ADVERTISEMENT

The most comprehensive support for physics in any mathematical software package
World-leading tools for performing calculations in theoretical physics

Maple 16
The Essential Tool for Mathematics and Science

- Your work in Maple matches how you would write the problems and solutions by hand
- State-of-the-art environment for algebraic computations in physics
- The only system with the ability to handle a wide range of physics computations as well as pencil-and-paper style input and textbook-quality display of results
- Access to Maple’s full mathematical power, programming language, visualization routines, and document creation tools

www.maplesoft.com/physics
A Short Simple Evaluation of Expressions of the Debye–Waller Form

N. DAVID MERMIN
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York
(Received 15 November 1965)

Averages like those encountered in the theory of the Debye-Waller factor are evaluated in one sentence.

When calculating absorption, emission, or scattering cross sections for crystalline matter in the harmonic approximation one needs the thermal equilibrium average of exponentials of operators linear in the atomic displacements and/or momenta:

\[\langle e^{\sum \omega_ia_i^*a_i + \frac{1}{2}} \rangle = \text{Tr} \left(e^{-\beta H} \right) e^{\sum \omega_ia_i^*a_i} / \text{Tr} \left(e^{-\beta H} \right), \]

\[H = \sum \omega_i(a_i^*a_i + \frac{1}{2}), \quad \beta = 1/k_BT, \quad [a_i, a_i^*] = \delta_{ij}. \]

(1)

This can be evaluated in a variety of ways, some difficult, some direct, but all annoyingly cumbersome considering the simplicity of the final form. Here is a derivation as simple as the result:

As in most approaches, begin by using the well-known formula

\[e^Ae^B = e^{A+B} \quad ([A, B] \text{ a c-number}) \]

to reduce (1) to

\[\langle e^{\sum \omega_i^2a_i^*a_i + \frac{1}{2}} \rangle = \langle e^{\sum \omega_i^2a_i^*a_i} \rangle e^{-\frac{1}{2}\sum \omega_i^2}, \]

(3)

but instead of proceeding with the clumsy direct evaluation of

\[g(c, d) = \langle e^{\sum \omega_i^2a_i^*a_i} \rangle, \]

(4)

note that (2) also entitles one to conclude

\[\langle e^{\sum \omega_i^2a_i^*a_i + \frac{1}{2}} \rangle = \langle e^{\sum \omega_i^2a_i^*a_i} \rangle e^{\frac{1}{2}\sum \omega_i^2}, \]

(5)

which is consistent with (3) only if

\[g(c, d) = e^{\sum \omega_i^2a_i^*a_i + \frac{1}{2}} g(c, d), \]

(6)

from which identity it follows at once (by iteration or induction on n) that

\[g(c, d) = e^{\sum \omega_i^2a_i^*a_i + \frac{1}{2}} g(0, d), \]

(7)

and hence, taking the limit n \(\to \infty \) (each \(\omega_i \) is positive),

\[g(c, d) = e^{\sum \omega_i^2a_i^*a_i} g(0, d), \]

(8)

which, since it follows trivially from (4) that

\[g(0, d) = \langle e^{\sum \omega_i^2a_i^*a_i} \rangle = 1, \]

(9)

completes the derivation:

\[\langle e^{\sum \omega_i^2a_i^*a_i + \frac{1}{2}} \rangle = e^{\frac{1}{2}\sum \omega_i^2} g(c, d). \]