PHZ6426: Fall 2013
MIDTERM: Solutions

Please help your instructor by doing your work neatly. Every (algebraic) final result must be supplemented by a check of units. Without such a check, no more than 75% of the credit will be given even for an otherwise correct solution.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>20</td>
</tr>
<tr>
<td>1b</td>
<td>15</td>
</tr>
<tr>
<td>1c</td>
<td>15</td>
</tr>
<tr>
<td>2a</td>
<td>30</td>
</tr>
<tr>
<td>2b</td>
<td>20</td>
</tr>
</tbody>
</table>
The energy spectrum of charge carriers in graphene is described by the Dirac-like dispersion relation (see Fig. 1):
\[\varepsilon_k = \pm \hbar v_0 |k|. \]

Find the \(T \) dependence of the electronic part of the specific heat for several positions of the Fermi energy with respect to the “Dirac point” (\(\varepsilon_k = 0 \)):

a) \(\varepsilon_F = 0; \)
b) \(\varepsilon_F > 0; \)
c) \(\varepsilon_F < 0. \)

For cases b) and c), consider only the low-temperature limit: \(k_B T \ll |\varepsilon_F| \). You may need to use the fact that
\[\int_0^{\infty} dx \frac{x^2}{e^x + 1} = \frac{3}{2} \zeta(3) \approx 1.803, \]
where \(\zeta(z) \) is the Riemann zeta-function.

Solution The grand-canonical free energy of an electron gas with \(\varepsilon_F = 0 \) is given by
\[F = -2k_B T \sum_{j = \pm} \int \frac{d^2 k}{(2\pi)^2} \ln \left(1 + e^{-\varepsilon_{j,k}/k_B T} \right), \]
where \(j = (+/-) \) corresponds to the conduction (valence) band. The density of states in graphene is found from the Pauli principle:
\[g(\varepsilon) = \frac{1}{\pi} \frac{k(\varepsilon)}{|d\varepsilon/dk|} = \frac{1}{\pi \hbar^2 v_0^2} |\varepsilon|. \]

Apparently, \(g \) is an even function of energy. Switching from an integration over \(k \) to that over \(\varepsilon \), and taking into account both the conduction and valence bands, we obtain
\[F = -k_B T \left[\int_0^{\infty} d\varepsilon g(\varepsilon) \ln \left(1 + e^{-\varepsilon/k_B T} \right) + \int_{-\infty}^0 d\varepsilon g(\varepsilon) \ln \left(1 + e^{\varepsilon/k_B T} \right) \right] \]
\[= -k_B T \int_0^{\infty} d\varepsilon g(\varepsilon) \ln \left(1 + e^{-\varepsilon/k_B T} \right) - \frac{2}{\pi \hbar^2 v_0^2} k_B T \int_0^{\infty} d\varepsilon \ln \left(1 + e^{\varepsilon/k_B T} \right) \]

Integration by parts gives
\[F = -\frac{1}{\pi \hbar^2 v_0^2} k_B T \int_0^{\infty} d\varepsilon \frac{\varepsilon^2}{e^{\varepsilon/k_B T} + 1} = -\frac{1}{\pi \hbar^2 v_0^2} \frac{(k_B T)^3}{v_0^2} \int_0^{\infty} dx \frac{x^2}{e^x + 1}, \]
where \(\zeta(z) \) is the Riemann function.

\[C_V = -T \frac{\partial^2 F}{\partial T^2} = \frac{9}{\pi \hbar^2 v_0^2} \zeta(3) \frac{k_B^2 T^2}{v_0^2}. \]

For cases b) and c), there is no need to re-do the calculation from the scratch. It suffices to recall that \(C_V \) for a Fermi gas with arbitrary dispersion and at \(k_B T \ll |\varepsilon_F| \) is given by
\[C_V = \frac{\pi^2}{3} g(\varepsilon_F) k_B^2 T = \frac{\pi}{3 \hbar^2 v_0^2} |\varepsilon_F| k_B^2 T. \]
P2 a) Identify the primitive unit cell of a two-dimensional triangular lattice. Find the basis vectors.
 b) Construct the basis vectors of the reciprocal unit cell.

Solution

See Fig. 2. Denoting the side of an equilateral triangle as \(a \), the basis vectors can be chosen as

\[
\mathbf{a}_1 = a \hat{x}; \quad \mathbf{a}_2 = \frac{a}{2} \hat{x} + \frac{\sqrt{3}}{2} a \hat{y}.
\]

The reciprocal lattice vectors are defined by the condition

\[
\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}
\]

or, in components,

\[
\begin{align*}
a_{1x}b_{1x} + a_{1y}b_{1y} &= 2\pi \\
a_{2x}b_{2x} + a_{2y}b_{2y} &= 2\pi \\
a_{1x}b_{2x} + a_{1y}b_{2y} &= 0 \\
a_{2x}b_{1x} + a_{2y}b_{1y} &= 0.
\end{align*}
\]

We then obtain \(b_{2x} = 0, b_{2y} = 2\pi/a_{2y} = 4\pi/a\sqrt{3}, b_{1x} = 2\pi/a_{1x} = 2\pi/a, b_{1y} = -\frac{a_{2x}}{a_{2y}}b_{1x} = -2\pi/a\sqrt{3} \)

or

\[
\begin{align*}
\mathbf{b}_1 &= \frac{2\pi}{a} \hat{x} - \frac{2\pi}{a\sqrt{3}} \hat{y} \\
\mathbf{b}_2 &= \frac{4\pi}{a\sqrt{3}} \hat{y}.
\end{align*}
\]

The reciprocal primitive unit cell is a parallelogram obtained by rotating the unit cell in the coordinate space by \(\pi/2 \) and by rescaling the sides by a factor of \(2\pi/a \).
FIG. 2: Primitive unit cell (shaded) and basis vectors.