Reading: Class notes and references linked to the class diary (e.g., arXiv:1006.0653).

Problem 1. s_{min} variable. Consider a collider event in which a certain number N_{vis} of visible particles were produced and their total energy E and momentum \vec{P} were measured. In other words, we combine the individually measured energies E_i and momenta \vec{P}_i of the visible particles into a single 4-vector (E, \vec{P}) describing the whole collection of visible particles:

$$E \equiv \sum_{i=1}^{N_{\text{vis}}} E_i, \quad \vec{P} \equiv \sum_{i=1}^{N_{\text{vis}}} \vec{P}_i.$$

Suppose that in this event we also observe transverse momentum imbalance, i.e., we measure some missing transverse momentum \vec{P}_T. We hypothesize that this missing momentum is due to the production of N_{inv} invisible particles, with unknown masses $M_1, M_2, M_3, \ldots M_{N_{\text{inv}}}$.

We now ask the question, what is the minimum possible center-of-mass energy in this event? Minimize the \sqrt{s} of the event as a function of the momenta \vec{q}_i of the invisible particles, subject to the constraint

$$\sum_{i=1}^{N_{\text{inv}}} \vec{q}_i = \vec{P}_T$$

and show that

$$\sqrt{s_{\text{min}}} = \sqrt{E^2 - P_z^2} + \sqrt{M_{\text{miss}}^2 + \vec{P}_T^2},$$

where

$$M_{\text{miss}} \equiv \sum_{i=1}^{N_{\text{inv}}} M_i$$

is the combined mass of all invisible particles.

Hint: If you are having trouble with the general case, start with $N_{\text{inv}} = 1$ and then move up from there.

Problem 2. Transverse mass in single W production. Consider single production of W-like bosons in the presence of initial state radiation, e.g. a jet with some transverse momentum \vec{U}_T. The W decays to a massless lepton with measured momentum \vec{P} and an invisible particle with some unknown mass M_χ. Calculate the value of P_T in the following two special cases: In the CM frame of the event, the W and the jet are purely in the transverse plane (have no z-component of the momentum) and the lepton is emitted

a) in the direction of the jet \vec{U}_T

b) in the direction opposite to the jet \vec{U}_T (i.e. in the direction of the W).
Show that

\[P_{T}^{\pm} = \frac{M_{W}^{2} - M_{\chi}^{2}}{2M_{W}^{2}} \left(\sqrt{M_{W}^{2} + U_{T}^{2}} \pm U_{T} \right) \]

For those two situations (\(\pm \)), find the transverse \(W \) mass \(M_{TW} \) as a function of the two measured momenta \(\vec{P}_{T} \) and \(\vec{U}_{T} \) and a hypothesized mass \(\tilde{M}_{\chi} \) for the missing particle. Let us take the true masses to be \(M_{W} = 400 \text{ GeV} \) and \(M_{\chi} = 200 \text{ GeV} \). Plot the two functions \(M_{T,W}(\tilde{M}_{\chi}) \) for \(U_{T} = 0 \); for \(U_{T} = 100 \text{ GeV} \) and for \(U_{T} = 1000 \text{ GeV} \).