1. If \(u = f(x - ct) + g(x + ct) \), show that

\[
\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}.
\]
(1)

What can you say about the possible physical interpretation of \(u \)?

2. Given \(s(v, T) \) and \(v(p, T) \), define \(c_p \equiv T(\partial S/\partial T)_p \), \(c_v \equiv T(\partial s/\partial T)_v \). Show that

\[
c_p - c_v = T \left(\frac{\partial s}{\partial v} \right)_T \left(\frac{\partial v}{\partial T} \right)_p
\]
(2)

[Hint: you need \(s(p, T) \) to calculate \(c_p \), i.e. find \(dS = (\ldots)dp + (\ldots)dT \).]

3. Find the point on the curve \(x^2 - 2\sqrt{3}xy - y^2 = 2 \) which is closest to the origin \(0, 0 \).

4. The temperature of a rectangle bounded by the lines \(x = \pm 1 \), \(y = \pm 2 \) is given by \(T = x^2 - 4y^2 + y - 5 \). Find the hottest and coldest point.

5. Transform the differential equation

\[
x^2 \left(\frac{d^2 y}{dx^2} \right) + 2x \left(\frac{dy}{dx} \right) - 5y = 0
\]
(3)

with the help of the substitution \(x = e^z \) into another differential equation in \(d^2 y/dz^2 \), \(dy/dz \) and \(y \) which has only constant coefficients of the derivative terms.