<table>
<thead>
<tr>
<th>Week</th>
<th>Material</th>
<th>Reading Assignment</th>
<th>Homework Assignment</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 7</td>
<td>Course Introduction Syllabus, Policies</td>
<td>Chapter 1</td>
<td>Problem Set 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Math Prerequisites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 14</td>
<td>Math Prerequisites (cont’d)</td>
<td>Chapter 2.1, 2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. 2: Superposition, Coulomb's Law</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric fields, continuous charge distributions, field lines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 21</td>
<td>Gauss's Law</td>
<td>Chapter 2.3</td>
<td>Problem Set 2</td>
<td>No class Jan. 21; MLK Day</td>
</tr>
<tr>
<td></td>
<td>[\mathbf{\nabla} \times \mathbf{E} = 0 \rightarrow \mathbf{E} = -\mathbf{\nabla} \mathbf{V}]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poisson's, Laplace's equations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potential of charge distributions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. 28</td>
<td>Boundary conditions</td>
<td>Chapter 2.4, 2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Work done in moving charges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrostatic energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ideal conductors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 4</td>
<td>Surface charges</td>
<td>Chapter 3.1, 3.2</td>
<td>Problem Set 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacitance and capacitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. 3: Laplace's equation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boundary conditions and Uniqueness Theorem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 11</td>
<td>Method of Images</td>
<td>Chapter 3.3, 3.4</td>
<td>Exam 1, Monday, February 11 Ch. 1,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Separation of variables in Cartesian, spherical, and cylindrical coordinates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 18</td>
<td>Green's Functions</td>
<td>Chapter 4.1, 4.2</td>
<td>Problem Set 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multipole Expansions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric Dipoles and Quadrupoles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 25</td>
<td>Ch. 4: Dielectrics</td>
<td>Chapter 4.3, 4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polarization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bound charges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 4</td>
<td>SPRING BREAK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 11</td>
<td>Internal electric fields in dielectrics</td>
<td>Chapters 5.1, 5.2</td>
<td>Problem Set 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric displacement (\mathbf{D})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theory of linear dielectrics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 18</td>
<td>Ch. 5: Magnetic fields and forces</td>
<td>Chapter 5.3,5.4</td>
<td>Exam 2 Wednesday, Mar. 20 Ch. 3,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyclotron Motion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biot-Savart Law</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
<td>Chapter(s)</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Mar. 25</td>
<td>$\nabla \cdot \mathbf{B}, \nabla \times \mathbf{B}$</td>
<td>Chapter 6.1,6.2</td>
<td>Problem Set 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ampere's Law</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charges vs. monopoles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vector potential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 1</td>
<td>Magnetic multipoles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch. 6: Diamagnets and paramagnets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetic dipoles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 8</td>
<td>Magnetization</td>
<td>Chapter 6.4</td>
<td>Problem Set 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bound currents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetic displacement, \mathbf{H}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 15</td>
<td>Magnetic susceptibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ferromagnets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 22</td>
<td>Review/Catch-Up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 29</td>
<td>FINAL EXAM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>