We cannot allow more jitter in a system than the UI, which is 625 ps, or errors will result.

The transmitter is specified to consume 0.2 UI of the budget under clean GTX (40 ps peak-to-peak) and power supply, and could be worse. GTX jitter above 5 MHz is filtered out, below – passes through.

The receiver is specified to consume 0.50 UI of the budget under clean GTX (40 ps peak-to-peak) and power supply.

Media jitter comes from Finisar spec and is about 0.2 UI.

Remaining budget is about 0.1 UI or 60 ps.

GTX requires 40 ps peak-to-peak jitter max

For reference: PP = (6-14)*RMS
SP02 utilizes Virtex-II DLLs to double the CCB 40 MHz clock for TLK2501 Transceivers.

80 MHz GTX Reference Clocks

40 MHz Clocking

DLL Clock multipliers in this FPGAs
Beam Test Lessons

While CCB oscillator & TTC clock peak-to-peak jitter specs are very close:

- TTCrx chip Peak-to-peak jitter $PP = 350$ ps
- CCB oscillator Peak-to-peak jitter $PP = 250$ ps

link behavior is quite different:

- Reasonable BER when using CCB oscillator clock
- Error flood when using TTC clock

Question is, what affects the DLL (and consequently link) performance?

- Guess: different jitter spectrum of the clocks?

Tektronix TDS7000 series oscilloscope (models TDS7104 and higher) with TDSJIT3 Jitter and Timing Analysis Software might help in understanding the problem.

Availability?
Receiver Clock Requirements

Both TLK2501 Transmitter and Receiver contribute to the overall link performance/jitter
✓ Leave Transmitter performance enhancements to Rice (use of QPLLs, Frequency Translators, Clock Regenerator ICs, etc.)
✓ Improve Receiver performance by providing a jitter-free reference clock
✓ Reference clock may be asynchronous to the transmitter clock, but within 100 ppm of it → use XO (crystal oscillator) instead of clock multiplier
✓ Receiver recovered clock will still be synchronous to the transmitter clock

XO Requirements:
✓ Custom frequency of 80.1574 MHz, fundamental mode
✓ 3.3v power supply
✓ Surface mount
✓ ± 25 ppm or better stability (including 10 year aging)
✓ Jitter performance optimized for Fibre Channel applications
✓ Differential output (LVDS, LVPECL)

Available Devices:
✓ Connor-Winfield P143–80.1574 MHz → LVPECL
✓ M-tron Industries M200116FL(P)N-80.1574 MHz → LVDS (LVPECL)
✓ SaRonix SEL3810A-80.1574 → LVPECL
Updated SP02 Clocking Solution

Add 80 MHz oscillator and deliver clean clock to each TLK2501 chip

- XO 80 MHz
 - Differential Clocking
 - 100Ω Termination
- Fan-out (LVDS)
- Fan-out (LVTTL)
 - 40 MHz Clocking
 - 50Ω AC Termination

Receivers

Transmitter

XO 80 MHz Clock fan-outs in this FPGAs

XO 80 MHz

TLK2501 Reference Clocks