Back-Reaction, Relaxation of Λ & Dark Energy

Richard Woodard (U. Florida)
Nick Tsamis (U. Crete)
Quant. Gravitational Inflation

- Fund. IR gravity: $G_{\mu\nu} = -\Lambda g_{\mu\nu}$
- $\Lambda \sim [10^{12} \text{ GeV}]^2$ starts inflation
 - $ds^2 = -dt^2 + a^2(t) \, dx^2$ with $a(t) = e^{Ht}$
- QG “friction” stops inflation
 - $\rho_1 \sim +\Lambda^2$
 - $\rho_2 \sim -G\Lambda^3 \ln[a(t)]$
 - $\rho_L \sim -\Lambda^2 [G\Lambda \ln(a)]^L$
- Hence $p \sim -\rho \sim \Lambda^2 \, f[G\Lambda \ln(a)]$
Only Causality Stops Collapse!

- IR gravitons $\Rightarrow \rho_1 \sim +\Lambda^2$
- w/o causality $\Rightarrow \rho_2 \sim -G\Lambda^3 a^2(t)$
 - $R(t) \sim a(t)/H$ and $M(t) \sim H a^3(t)$
 - $\Delta E(t) = -GM^2/R \sim -G\Lambda^3 a^5(t)$
- Causality changes powers of $a(t)$ to powers of $\ln[a(t)]$
- But grav. Int. E. still grows w/o bound
Need Phenomenological Model

- Advantages of QG Inflation
 - Natural initial conditions
 - No fine tuning
 - Unique predictions

- But tough to USE!

- Try guessing most cosmologically significant part of effective field eqns
\[G_{\mu\nu} = -\Lambda g_{\mu\nu} + 8\pi G T_{\mu\nu}[g] \]

- \[T_{\mu\nu}[g] = p \ g_{\mu\nu} + (\rho + p) \ u_\mu u_\nu \]
 - Posit \(p[g] \)
 - Infer \(\rho \) and \(u_\mu \) from conservation

- Getting \(p[\text{de Sitter}] = \Lambda^2 \ f[\Lambda \Lambda \ln(a)] \)
 - [...] must be nonlocal because

\[R_{\mu\nu\rho\sigma} = \frac{\Lambda}{3} \left[g_{\mu\rho} g_{\nu\sigma} - g_{\mu\sigma} g_{\nu\rho} \right] \]

- Simplest is \(X = 1/\Box R \)
\[R \& \quad \Box \equiv (-g)^{-1/2} \partial_{\mu} [(-g)^{1/2} g^{\mu\nu} \partial_{\nu}] \]

- \(R = 6 \frac{dH}{dt} + 12 H^2 \) for flat FRW
- \(\Box f(t) = -a^{-3} \frac{d}{dt} [a^3 \frac{df}{dt}] \)
 - Hence \(\frac{1}{\Box} f = -\int^t du a^{-3} \int^u dv a^3 f(v) \)
- For de Sitter \(a(t) = e^{Ht} \) and \(\frac{dH}{dt} = 0 \)
 - \(\frac{1}{\Box} R = -4 Ht + 4/3 [1 - e^{-3Ht}] \sim -4 \ln(a) \)
- Also \(D_P = \Box^2 + 2 D_{\mu} [R^{\mu\nu} - g^{\mu\nu} R/3]D_{\nu} \)
 - On \(f(t) \Rightarrow a^{-3} \frac{d}{dt} a \frac{d}{dt} a \frac{d}{dt} a \frac{d}{dt} a \)
 - Hence \(\frac{1}{D_P} [\alpha R^2 + \beta \Box R] \) also possible
Spatially Homogeneous Case

- $G_{\mu\nu} = (p-\Lambda)g_{\mu\nu} + (\rho+p)u_\mu u_\nu$
 - $X = \frac{1}{\Box} R = -\int^t du a^{-3}\int^u dv a^3 \left[12H^2 + 6dH/dv\right]$
 - $p = \Lambda^2 f(-G\Lambda X)$
 - $\rho + p = a^{-3}\int^t du a^3 dp/du$ and $u^\mu = \delta^\mu_0$

- Two Eqns
 - $3H^2 = \Lambda + 8\pi G \rho$
 - $-2dH/dt - 3H^2 = -\Lambda + 8\pi G p$ (easier)

- Parameters
 - 1 Number: $G\Lambda$ (nominally $\sim 10^{-12}$)
 - 1 Function: $f(x)$ (needs to grow w/o bound)
Numerical Results for $\Gamma / 300$ and $f(x) = e^{x-1}$

- $X = -\int^t du \ a^{-3} \int^u dv \ a^3 R$
- Criticality
 $p = \Lambda^2 f(-G \Lambda X) = \Lambda / 8\pi G$
- Evolution of $X(t)$
 - Falls steadily to X_c
 - Then oscillates with constant period and decreasing amplitude
 - For all $f(x)$ growing w/o bound
Inflation Ends, $H(t)$ goes < 0, $R(t)$ oscillates about 0
Analytic Treatment ($\epsilon \equiv G\Lambda$)

- $2 \frac{dH}{dt} + 3 H^2 = \Lambda[1 - 8\pi\epsilon f(-\epsilon X)]$
- $X(t) = X_c + \Delta X(t)$
 - $f \approx f_c - \epsilon\Delta X f'_c$
 - $2\frac{dH}{dt} + 3 H^2 \approx 24\pi\epsilon^2 f'_c \Delta X$
- Use $R = 6 \frac{dH}{dt} + 12 H^2$
 - L.H.S. = $R/3 - H^2$
 - $\Delta X = 1/R - X_c$
- Act $\Box = -[d/dt + 3H]d/dt$ to localize
 - $[(d/dt)^2 + 2H(d/dt) + \omega^2]R \approx 0$
 - $R(t) \approx \sin(\omega t)/a(t)$
 - $\omega^2 = 72\pi\epsilon^2 f'_c$ (agrees with plots!)
Origin of Scalar Perturbations

1. In Fundamental QG Inflation
 - \(\mathcal{L} = \frac{1}{16\pi G} (R - 2\Lambda)(-g)^{1/2} \)
 - Two \(h_{ij}'s \) can make a scalar!
 - E.g. Graviton KE: \(h_{ij} h_{ij} + \nabla h_{ij} \nabla h_{ij} \)
 - Usually negligible but if IR logs make homogeneous \(\sim O(1) \) maybe perts \(\sim O(G\Lambda) \)

2. In Phenomenological Model
 - \(T_{\mu\nu}[g] = p \, g_{\mu\nu} + (\rho+p) \, u_{\mu} u_{\nu} \)
 - \(p = \Lambda^2 \, f(-G\Lambda/\square R) \) fixed by retarded BC
 - But \(\rho \) and \(u_{i} \) at \(t=0 \) not fixed by \(D^{\mu} T_{\mu\nu} = 0 \)
Analysis (in conformal coords)

- 0th order: \(2\alpha''/a^3 - a'/a^4 = \Lambda[1 - 8\pi\epsilon f(-\epsilon X_0)] \)
- \(h_{\mu\nu}dx^\mu dx^\nu = -2\phi d\eta^2 - 2B_{,i}dx^i d\eta - 2[\psi\delta_{ij} + E_{,ij}]dx^i dx^j \)
 - \(\Phi = \phi - a'/a (B-E') - (B'-E'') \)
 - \(\Psi = \psi + a'/a (B-E') \)
- \(G_{ij} \text{ Eqn } \Rightarrow \Psi = \Phi \text{ and } \Phi = \phi - a'/a (B-E') - (B'-E'') \)
- \(\frac{2}{a^2}\Phi'' + 6a'/a^3 \Phi' + [4a''/a^3 - 2a^2/a^4] \Phi = -8\pi\epsilon^2\Lambda f'(-\epsilon X_0) \times 1/\Box_0 [\nabla^2/a^2 \Phi - 6/a^2 \Phi'' - 24 a'/a^3 \Phi' - 4/a^2 X_0' \Phi'] \)
- Divide by \(f'(-\epsilon X_0) \) & act \(\Box_0 = a^{-2}[\partial_0^2 + 2a'/a \partial_0 - \nabla^2] \)
 - 4th order eqn \(\Rightarrow \) 2 physical & 2 unphys.
 - If \(X_0(t) \Rightarrow X_c \) then \(\Phi(t,x) \Rightarrow \text{const} \)
Late Time Acceleration

- Model driven by $X = 1/R$
 - Oscillations & $H < 0 \Rightarrow$ efficient reheating
 - $H = 1/2t \Rightarrow R = 6 \frac{dH}{dt} + 12 H^2 = 0$
- QG ends inflation, reheats & then turns off for most of cosmological history
 - $X(t) = -\int^t du \ a^{-3} \int^u dv \ a^3 \ R \rightarrow X_c$
 - $H = 2/3t \Rightarrow R = 4/3t^2 \neq 0$
 - $X(t) \approx X_c - 4/3 \ln(t/t_{eq})$
 - But this gives FURTHER screening!
- $X_2 = -1/D_p \ [\alpha R^2 + \beta \Box R]$
 - $\alpha > 0 \Rightarrow$ ends inflation
 - $\beta > 2/3 \alpha \Rightarrow$ late acceleration
Conclusions

- Advantages of QG Inflation
 1. Based on fundamental IR theory \(\Rightarrow\) GR
 2. \(\Lambda\) not unreasonably small!
 3. \(\Lambda\) starts inflation naturally
 4. QG back-reaction stops
 - Simple idea: Grav. Int. E. grows faster than \(V\)
 5. 1 free parameter: \(\Lambda\)

- But tough to use \(\Rightarrow\) Phenom. Model
\[T_{\mu\nu}[g] = p \, g_{\mu\nu} + (\rho+p) \, u_{\mu} u_{\nu} \]

- Guess \(p[g] = \Lambda^2 \, f(-G\Lambda \, X) \)
 - \(X_1 = 1/\Box \, R \) or \(X_2 = -1/D_p \left[\alpha R^2 + \beta \Box R \right] \)
 - Infer \(\rho \) and \(u_i \) from conservation

- Homogeneous evolution: (generic \(f \))
 - \(X \) falls to make \(p \) cancel \(-\Lambda/8\pi G\)
 - Then osc. with const. period & decr. amp.

- Reheats to radiation dom. (R=0)
 - Matter dom. \(\Rightarrow R \neq 0 \)
 - \(X_2 \) can give acceleration

- Perturbations look good