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This paper calculates the luminosity of gravitational waves emanating from close stellar encounters
in both the classical limit and with first order post-Newtonian corrections. We also model gravita-
tional waveforms with post-Newtonian corrections through the first order for varying eccentricities
and angles of observation. Models are also generated using classical methods and are compared to
those with post-Newtonian corrections. The stellar systems considered include bounded orbits with
circular and elliptical trajectories as well as unbounded encounters such as parabolic and hyper-
bolic systems. We found that eccentricity has a much more pronounced effect on the shape of the
gravitational waveform and the strain amplitude than the angle of observation, a dependence that
is only introduced by post-Newtonian corrections.

INTRODUCTION

Gravitational wave (GW) research has advanced immensely since the first theoretical predictions of GWs by Einstein
in 1916. Attempts to detect GWs has progressed from early resonant bar apparati to current laser interferometers such
as VIRGO and LIGO. Recent advancements in instrumentation have lowered the frequency threshold of detectable
GWs, and future projects such as Advanced LIGO promise a tenfold increase in sensitivity. Although GWs have
still not been detected directly, indirect confirmations of Einstein’s prediction, such as the shifting period of the
Hulse-Taylor pulsar (PSR 1913+16) continue to fuel the search. Researchers hope to detect the first GWs when
Advanced LIGO begins observations in 2013. In order to effectively sort through the vast amount of gravitational
radiation detectors are expected to receive and classify the individual sources of many GWs superimposed into one
signal, it is essential to understand what waveforms from various sources should look like. Analysis of GWs received
by detectors will involve comparison of incoming signals to theoretically derived templates of gravitational waveforms
from various astrophysical sources. This is particularly pertinent to the stochastic background, which is made up of
many superimposed GW signals radiated from sources across the detector’s field of view. Since the detector’s angular
resolution is much greater than the angular resolution of the GW sources, the detector receives a signal which is
a mix of cosmological and astrophysical sources from uncorrelated GW emission events. Signal processing is being
developed to efficiently break the stochastic signal into constituent waveforms, and comparing the resulting signals
to theoretically generated templates should garner information about the events which contribute to the background
radiation. Investigation of the stochastic background could provide information about the very early stages of the
universe, much closer to the Big Bang than the analagous Cosmic Microwave background. For a more complete
discussion of the stochastic microwave background and signal processing see [2] and [1].

In Section I, this paper generates a first approximation of gravitational waveforms from circular, elliptical, parabolic,
and hyperbolic stellar encounters. These encounters are non-collisional interactions between two stars passing close
by each other with either bounded (circular and elliptical) or unbounded orbits (parabolic and hyperbolic). Section II
builds on the gravitational waveforms and luminosities calculated in Section I by including post-Newtonian corrections.
The formalism used in Section II is based on initial work by Chandresekhar, which was later applied to gravitational
radiation by Epstein and Wagoner (1975). Post-Newtonian corrections add higher order terms to equations of motion,
luminosity equations, and waveform equations to account for effects of relativity, radiation reaction, spin, and tidal
effects. For example, equations of motion which include post-Newtonian corrections take the schematic form

d2
x

dt2
=

Gmx

r3

[

1 + O(ε) + O(ε
3

2 ) + O(ε2) + O(ε
5

2 ) + . . .
]

(1)

where the first term represents the classical Newtonian solution, and the various correction terms follow. Here we
consider corrections to the O(ε2) order using results developed by Wagoner and Will (1976). While basic derivations of
results pertinent to this paper are included, consult [6] for a more complete explanation. Inclusion of post-Newtonian
corrections is important because improving the accuracy of waveform templates makes identification GW sources
easier and improves the signal to noise ratio of GW detectors.
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SECTION I

Newtonian Classifications of Stellar Orbits

This section treats the orbits of stars passing close to one another as classical Newtonian systems. This is a good
first approximation for systems in which the orbiting bodies are compact objects. While very close encounters may
in fact raise tidal forces which pull material from the surface of a star, consideration of this effect on GW waveforms
is left to future research.

For two stars orbiting one another, of mass m1 and m2, we represent the velocity of the first star, m1, as

v = vr r̂ + vθ θ̂ (2)

where the radial velocity (vr) is vr = dr
dt , and the tangential velocity (vθ) is vθ = r dθ

dt . We now define two new
parameters: the reduced mass (µ = m1m2

m1+m2

) and γ = Gm1m2. Considering the kinetic and gravitational potential
energy, we can now write an equation for the energy of the entire system:

E =
1

2
µ

(

dr

dt

)2

+
L2

2µr2
− γ

r
(3)

where the angular momentum (L) is

L = r2 dφ

dt
. (4)

We can also use Equation 3 to express the effective potential energy (Veff),

Veff =
L2

2µr2
− γ

r
(5)

At a certain radius (r0), Veff reaches a minimum value due to the interaction between the repulsive effects of the
angular momentum term and the pull of the gravitational attraction term. Differentiating Veff with respect to r we

find that r0 = L2

γµ . Therefore, the minimum potential energy is

Veff (min) = −γ2µ

2L2
(6)

Since the kinetic energy term is positive (K = 1
2µ(dr

dt )
2), the total energy of the system cannot fall below Veff . In

the most extreme case, when the system’s total energy is at a minimum, we can set Veff (min) = Veff to solve for the
maximum and minimum values of r.

r(min, max) = − γ

2E
±
√

( γ

2E

)2

+
L2

2µE
(7)

Here the + corresponds to rmax and the - corresponds to rmin. Now we can solve the differential equation which gives
the energy of the system (3) by defining a new variable u = 1

r and re-writing dr
dt as

dr

dt
=

dr

dθ

dθ

dt
=

L

µr

dr

dθ
=

−L

µ

1

r

d

dθ
. (8)

Making these substitutions in Equation 3 and dividing by L2

2µ gives:

2µE

L2
= u′2 + u2 − 2µγ

L2
u (9)

where u′ = du
dθ . Differentiating with respect to θ gives

0 = u′(u′′ + u − γµ

L2
), (10)
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which has the solutions u′ = 0 and u′′ + u = γµ
L2 . The first solution corresponds to circular orbits, while the second

applies to all other possibile conical orbits. The equation given by the second solution is made more clear by solving
for u,

u =
γµ

L2
+ C cos(φ + α) (11)

and then rewriting the expression in terms of the radius:

r =
(γµ

L2
+ C cos(φ + α)

)

−1

. (12)

Both C and α are integration constants from solving the differential equation (9), and since the solution (12) must
satisfy the original equation (9), we can solve for C.

C2 =
2µE

L2
+
(γµ

L2

)2

(13)

Plugging in the minimum energy (6), we find that C ≥ 0. The value of C depends on the initial total energy of the
system. The types of orbits which arise may be classified according to the initial energy and values of C as shown
below.

TABLE I: Types of orbits resulting from initial energy conditions of the system.

C E0 Orbit Type

0 Emin Circular

0 < |C| < γµ

L2 Emin < E < 0 Elliptical

|C| = γµ

L2 0 Parabolic

|C| > γµ

L2 E > 0 Hyperbolic

Circular Orbits

In the case of binary systems with circular orbits, the radius of the orbit remains constant as a star precesses along
the trajectory and φ (the angle from the center of the orbit to the star) changes. This means u′ = 0 and consequently,
C = 0, which eliminates the φ dependence in Equation 12. Using Equation 12 and the minimum energy equation (6)
gives an expression for the radius of a stellar encounter with a circular orbit (r0).

r0 =
γ

2Emin
(14)

Elliptical Orbits

In the case where C can take on a range of values from 0 to µγ
L2 , r depends on φ. Choosing α = 0 puts the major

axis of the ellipse along φ = 0, and allows us to solve for the minimum and maximum values of r by using φ = 0 and
φ = π in Equation 12.

rmin =
[γµ

L2
+ C

]

−1

(15)

rmax =
[γµ

L2
− C

]

−1

(16)

The semi major axis of the ellipse, a, is related to r by 2a = rmin + rmax, so

a =
γµ

L2

[

(
γµ

L2
)2 + C2

]

−1

. (17)
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Or, using Equation 13 to eliminate C,

a =
γ

2E
. (18)

From basic geometric principles, the semi-latus rectum (l) is

l =
L2

γµ
, (19)

and using the general form of the radius of an ellipse l
r = 1 + e Cosφ, we find that in this case r is

r =
l

1 + ǫ cos φ
. (20)

We define the eccentricity of the ellipse, ǫ, to be
√

1−l
a .

Parabolic and Hyperbolic Orbits

We can consider the parabolic and hyperbolic cases together, since the inital conditions on C and E give each
unbounded orbits. For both cases r is still given by

r =
l

1 + ǫ cos(φ)
, (21)

but to ensure that r remains postive, φ must be restricted. Since 1 + ǫ cos(φ) ≥ 0, cos(φ) ≥ −1, and therefore
−π ≤ φ ≤ π. For a parabola, ǫ = 1, so φ must remain between −π and π. For a hyperbola, ǫ ≥ 1, which restricts φ to
an even smaller range to meet the condition cos(φ) ≥ −1. In both cases, r approaches ∞ as φ → π, which indicates
the stars seperate after the encounter.

Calculating GW Luminosity

Now that we have developed the equations for the trajectories of various orbits, we can use them to calculate the
gravitational radiation emitted from each encounter. Using Einstein’s weak field approximation, the metric is

gµν = δµν + κhµν , (22)

and plane GWs are written as

hµν = heµν cos(ωt − k · x). (23)

eµν is the unit polarization tensor of the wave, and a space-like, transverse wave travelling in the z direction can have
two polarizations (e1 and e2).

e1 =
1√
2
(x̂x̂ − ŷŷ) (24)

e2 =
1√
2
(x̂ŷ − ŷx̂) (25)

Using the quadrupole approximation, in which the quadrupole mass tensor is given by

Qij =
∑

a

ma(3xi
axj

a − δijr
2
a), (26)

we can calculate the power radiated with

dE

dΩ
=

G

8πc5

(

d3Qij

dt3
eij

)2

. (27)



5

To find the total luminosity for both possible polarizations we add the luminosities of each polarization, plugging e1

and e2 into Equation 27. To simplify the total luminosity we use the conditions on the polarization tensor,

eµν = eνµ, eµµ = 0, eµνeµν = 1. (28)

The luminosity summed over the two polarizations gives

∑

pol

dE

dΩ
=

G

8πc5

[

(

d3Qij

dt3

)2

− 2ni
d3Qij

dt3
nk

d3Qkj

dt3
− 1

2

(

d3Qii

dt3

)2

+
1

2

(

ninj
d3Qij

dt3

)2

+
d3Qii

dt3
njnk

d3Qjk

dt3

]

, (29)

where the n is the unit vector describing the direction of the incoming radiation. To get the total luminosity of the
incoming GWs we integrate over all directions of n (see [5] for further explanation). The total radiation received is

dE

dΩ
=

G〈Q(3)
ij Q(3)ij〉
45c5

. (30)

The notation Q
(3)
ij represents the third derivative of Qij with respect to time, and 〈Q(3)

ij Q(3)ij〉 indicates an average of
the quadrupole mass tensors over several wavelengths. This average is necessary because it is impossible to pinpoint
whether the energy of a GW lies in a particular crest or trough, and energy is described by relative displacements
of objects rather than a single point in space. To evaluate the luminosity of GWs from stellar interactions, I first
calculated each component of the quadrupole mass tensor in the plane of orbit (where θ = π

2 ) using the relationships
between Cartesian and spherical coordinates, (x, y, z) = (r cos(φ) sin(θ), r sin(φ) sin(θ), r cos(θ)).

Qxx = µr2(3 cos2(φ) − 1)

Qyy = µr2(3 sin2(φ) − 1)

Qzz = µr2

Qxz = Qzx = 0

Qyz = Qzy = 0

Qxy = Qyx = 3µr2 cos(φ) sin(φ)

(31)

Circular and Elliptical Orbits

To find the GW luminosity of circular and elliptical stellar encounters I first used Equation 20 to find the angular
velocity, φ̇. Substituting the radius of the ellipse (20) and l (19) into Equation 4, which relates φ̇ to angular momentum
and radius, gives L in terms of G, l, m1, m2, and e:

φ̇ =

√

Gl(m1 + m2)(e cos(φ) + 1)2

l2
. (32)

Using this result we can find the third derivatives of each quadrupole component:

d3Qxx

dt3
= β(24 cos(φ) + e(9 cos(2φ)) + 11) sin(φ)

d3Qyy

dt3
= −β(24 cos(φ) + e(13 + 9 cos(2φ)) sin(φ)

d3Qzz

dt3
= −2βe sin(φ)

d3Qxy

dt3
= −3

2

(Gl(m1 + m2)
3

2 µ

l4
(33)

(1+cos(φ))2(5e cos(φ) + 8 cos(2φ) + 3e[3φ)]

(34)

where

β =
Gl(m1 + m2)

3/2µ(ǫ cos(φ) + 1)2

l4
. (35)
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Next I calculated the product Q
(3)
ij Q(3)ij by using the quadrupole components (34) to construct the matrix Q

(3)
ij

and then multiplying by the transpose. Substituting the resulting product,

Q
(3)
ij Q(3)ij = G3

l5 [(m1 + m2)
3µ2(ǫ cos(φ) + 1)4 (36)

(9(5ǫ cos(φ) + 8 cos(2φ) + 3ǫ cos(3φ))2 + 4(11 + 24 cos(φ) + 9 cos(2φ))2 sin2(φ)](37)

into Equation 30, we find the total luminosity of circular and elliptical encounters:

dE

dΩ
=

G4f(φ)

180l5c5
, (38)

where

f(φ) = [(m1 + m2)
3µ2(1 + ǫ cos(φ))4(9(5ǫ cos(φ) + 8 cos(2φ) + 3ǫ cos(3φ))2 + 4(11 + 24 cos(φ) + 9 cos(2φ))2 sin2(φ)].(39)

To find the total radiation received over the entire length of the stellar interaction, integrate the instantaneous
radiation received over time, or alternatively over φ.

∆E =
G5

1440l5c5

∫ φ2

φ1

f(φ) dφ. (40)

For φ between 0 and π, the total energy emitted is

∆E =
G4π(m1 + m2)

3µ2

1440c5l5
F (e) (41)

where

F (ǫ) = (m1 + m2)
3µ2π2(6912 + ǫ(2592 + ǫ(49216 + ǫ(7776 + ǫ(1296 + 1145ǫ)))))). (42)

Since F (ǫ) only depends on the eccentricity, the amount of radiation emitted from a stellar encounter only depends
on the initial conditions of the binary system.

Parabolic and Hyperbolic Orbits

Using the same techniques as in the elliptical case, we find the angular velocity for parabolic and hyperbolic orbits,

φ̇ = l2L(ǫ cos(φ) + 1)2 (43)

and the third derivatives of the quadrupole mass tensor, Q
(3)
ij

d3Qxx

dt3
= ρ(24 cos(φ) + ǫ(9 cos(2φ)) + 11) sin(φ)

d3Qyy

dt3
= −ρ(24 cos(φ) + ǫ(13 + 9 cos(2φ)) sin(φ)

d3Qzz

dt3
= −2ρǫ sin(φ)

d3Qzz

dt3
= −3

2
ρ(ǫ cos(φ) + 1)2(5ǫ cos(φ) (44)

+8 cos(2φ) + 3ǫ cos(3φ))(45)

where

ρ = l8L3µ(ǫ cos(φ) + 1)2. (46)

Using Equation 40 and Equation 45 as before gives the power radiated from parabolic and hyperbolic encounters:

dE

dt
=

Gρ2

15c5
[912 + 125ǫ2 + 528ǫ cos(φ) + 48(4 + 3ǫ2) cos(2φ) + 9ǫ(16 cos(3φ) + 3 cos(4φ))] sin2(φ), (47)
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or

dE

dt
=

Gl16L6µ2

15c5
f(φ), (48)

where f(φ) is now

f(φ) = [912 + 125ǫ2 + 528ǫ cos(φ) + 48(4 + 3ǫ2) cos(2φ) + 9ǫ(16 cos(3φ) + 3 cos(4φ))] sin2(φ)(49)

Next we find the total radiation emitted during the interaction by using Equation 40 where −π ≤ φ ≤ π, yielding

∆E =
2Gl16L6µ2π

15c5
F (ǫ), (50)

where

F (ǫ) = (1 + ǫ cos[φ])4(192 + 125ǫ2 + 528ǫ cos(φ) + 48(4 + 3ǫ2) cos(2φ) + 9ǫ(16 cos(3φ) + 3ǫ cos(4φ))) sin2(φ).(51)

Repeating for the hyperbola, where −3π
4 ≤ φ ≤ 3π

4 , we find the total energy emitted during the interaction is:

∆E =
Gl16L6µ2π

10c5
F (ǫ), (52)

where

F (ǫ) = (1 + ǫ cos(φ))4(192 + 125ǫ2 + 528ǫ cos(φ) + 48(4 + 3ǫ2) cos(2φ) + 9ǫ(16 cos(3φ) + 3ǫ cos(4φ))) sin2(φ). (53)

As in the elliptical system, F (ǫ) and the total energy radiated depend only on the initial dynamics of the stellar
system.

Modeling the GW Waveforms

To model the gravitational waveforms we use the quadrupole mass tensors previously derived in the equation for
the strain amplitude (hij):

hij(t, R) =
2G

Rc4
Q̈jk. (54)

Here R is the distance from the source of the GWs to the observer, and the indices j, k run over 1, 2.

Elliptical Orbits

To find the GW amplitudes for an elliptical system, we use the quadrupole mass tensor components (31) and
angular momentum (32) to find the necessary components of Q̈jk to calculate strain (54). The individual components
contributing to the total strain amplitude of the GWs are:

h11 =
−G2µ(m1 + m2)

lRc4
(13ǫ cos(φ) + 12 cos(2φ) + ǫ(4ǫ + 3 cos(3φ)))

h22 =
G2µ(m1 + m2)

lRc4
(17ǫ cos(φ) + 12 cos(2φ) + ǫ(8ǫ + 3 cos(3φ)))

h12 =
−6G2µ(m1 + m2)

lRc4
(4 cos(φ) + ǫ(3 + cos(2φ))) sin(φ)

(55)

Adding each component in quadrature, gives the total strain amplitude for the GW:

h = 2
√

2

[

G4(m1 + m2)
2µ2

l2Rc8
(36 + 59ǫ2 + 10ǫ4 + ǫ(108 + 47ǫ2) cos(φ) + 59ǫ2 cos(2φ) + 9ǫ2 cos(3φ))

]1/2

. (56)

To model these waveforms for a typical close stellar encounter we use the parameters in Table II.
We define one star, m2, to be at rest in realtion to m1, which is moving with the velocity v0. When the stars

reach the point of closest approach, the radial velocity of m1 as seen by m2 is 0, which allows us to fix the angular
momentum as L = bv0. Using the parameters in Table II, we can plot the waveforms for the various initial conditions
and eccentricities representing different orbit shapes. The resulting waveforms for elliptical orbits with eccentricities
ǫ = 0.2, 0.5, 0.7 are shown below.
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TABLE II: Parameters Used to Model a Close Stellar Encounter.

Parameter Value Units Meaning

b 1 AU Impact parameter

v0 200 km/s Initial velocity of m1 relative to m2

m1 = m2 1.4 M⊙ kg Masses of stars

R 8 kpc Distance from encounter to observer

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1.´10-22

2.´10-22

3.´10-22

4.´10-22

Φ

h

FIG. 1: Gravitational waveforms for elliptical orbits with varying eccentricities. The thick line represents ǫ = 0.7, the dashed
line is e = 0.5, and the thin line is ǫ = 0.2.

Parabolic and Hyperbolic Orbits

Repeating the procedure for calculating the components of the strain amplitude, but using the angular momentum
for the parabolic and hyperbolic cases (43) gives:

h11 =
−Gµl6L2

Rc4
(13ǫ cos(φ) + 12 cos(2φ) + ǫ(4ǫ + 3 cos(3φ)))

h22 =
Gµl6L2

Rc4
(17ǫ cos(φ) + 12 cos(2φ) + ǫ(8ǫ + 3 cos(3φ)))

h12 =
−6Gµl6L2

Rc4
(4 cos(φ) + ǫ(3 + cos(2φ))) sin(φ)

(57)

Adding each component in quadrature gives the total strain amplitude for the GW:

h = 2
√

2

[

G2l12L4µ2

R2c8
(36 + 59ǫ2 + 10ǫ4 + ǫ(108 + 47ǫ2)(φ) + 59ǫ2(2φ) + 9ǫ2(3φ))

]1/2

.(58)

For parabolic orbits we find that the waveform for the eccentricity ǫ = 1 is

-3 -2 -1 0 1 2 3
0

1.´10125

2.´10125

3.´10125

4.´10125

5.´10125

Φ

h

FIG. 2: Gravitational waveform of parabolic orbits with an eccentricity of 1.
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For hyperbolic orbits we find that the waveforms for the eccentricities ǫ = 1.2, 1.5, 1.7 are

-3 -2 -1 0 1 2 3
0

2.´10125

4.´10125

6.´10125

8.´10125

Φ

h

FIG. 3: Gravitational waveforms of hyperbolic orbits. The thick line represents eccentricity ǫ = 1.7, the dashed line ǫ = 1.5,
and the thin line ǫ = 1.2.

SECTION II

Calculating GW Luminosity

The luminosity of GWs emanating from a close encounter of two stars has the general form

L =
R2

32π

∫

〈(

∂hij
TT

∂t

)2〉

dΩ, (59)

where hij
TT is the transverse traceless component of the strain amplitude for two body systems. hij

TT including post-
Newtonian corrections is given by:

hij
TT =

2µ

R

[

2(vivj − mrirj

r3
) +

µ

m

[

(n · r)3m

r3
(2v(ivj) − ṙrirj

r
) − (n · v)(2vivj − mrirj

r3
)

]

+
m

3r
(1 − 6µ

m
)

[

2vivj − rirj

r2
(2Ẽ +

3m

r
− 3ṙ2) − 4v(ivj)ṙ

r

]

+2

{

(1 − 3µ

m
)vivjẼ − mrirj

r3

[

3Ẽ(1 +
µ

m
) − (2 − 4µ

m
)
m

r
− 3µṙ2

2m

]

+ (4 − 2µ

m
)
v(irj)mṙ

r2

}

+(1 − 3µ

m
)

{

2(n · v)2(vivj − mrirj

3r3
) − 4m

3r3
(n · v)(n · v)(8v(irj) − 3ṙrirj

r
)

− m

3r3
(n · r)2

[

14vivj − rirj

r2
(6Ẽ + 13

m

r
− 15ṙ2) − 30v(irj)ṙ

r

]

, (60)

where m = m1 + m2, µ = m1 − m2, ṙ = dr
dt , and r = r(cos φex + sin φey). Following Wagoner and Will (1975),

substituting Equation 60 in Equation 59 and integrating over the solid angle, dΩ, yields a new luminosity equation.
The luminosity of a two body system with post-Newtonian corrections to the O(ε) order is:

L =
8µ2m2

15r4

{

(12v2 − 11ṙ2) + 24(Ẽ + m/r)

[

14µẼ

m
− (6 − 9µ/m)mr

]

+ ṙ2
[

2Ẽ(33 + 43µ/m) + 3m/r(8 + 21µ/m)

+
3

2
(20 + 3µ/m)ṙ2 + 4(1 − 6µ/m)[(Ẽ + m/r)(6Ẽ + 7m/r) − 1

3
ṙ2(21Ẽ + 23m/r − 6ṙ2)]

+
1

7
(1 − 3µ/m)[16(Ẽ + m/r)(17Ẽ − 10m/r) − 1

3
ṙ2(144Ẽ − 440m/r + 105r2)]

+
1

7
(1 − 4µ/m)[(Ẽ + m/r)(345Ẽ + 397m/r) + 4(m/r)2 − ṙ2(319Ẽ + 349m/r − (297ṙ2/4)], (61)
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where the negative binding energy Ẽ is

Ẽ =
1

2
v2 − m

r
+

3

8
v4(1 − 3µ/m) +

1

2

m

r

2
+ (3v2m/2r)(1 + µ/3m) +

µ

2r
(v · r/r)2 (62)

As noted in Section I, the luminosity is only dependent on initial conditions and the orbital shape of the stellar
enounter. Therefore, the general result (61) may be used to calculate the GW luminosity emitted from stellar
encounters of various orbital shapes. Substituting ǫ = 0, φ = ωt, and ω = 4J ∗ E2/m2 in Equation 61 we found that
the radiation luminosity emitted from a binary system with a circular orbit is consistent with Wagoner and Will’s
(1975) result [6]:

L =
l

105l3(l + 3m − u)6
8mu2

(

14Ẽl3m(15m − 116u)(l + 3m − u) + Ẽl3(785m − 852u)(l + 3m − u)2

+m2(42l4 + 84L(3m − u)3 − 42l2(−3m − u)2 + 84(−3,−u)4 − l3(571m + 788u))

−42lm2(l + 3m − u)2(l − 6m + 2u) cos

[

8Ẽ2Jt

m2

]

, (63)

where the angular momentum per reduced mass, J is:

J = (mp)1/21 + (m/2p)[(7 − µ/m) + (1 − 3µ/m)e2]. (64)

Modeling the GW Waveforms

To model the waveforms of stellar encounters with post-Newtonian corrections it is convenient to represent the
strain amplitude in an alternate basis related to θ and φ. The observer’s line of sight toward the stellar encounter is
defined as n = sin θex +cos θez, where θ is the angle between n and the z axis (othogonal to the plane of the observer).
A new basis which is orthogonal to the observer’s direction is defined as having the independent components eθ = 1

R
∂
∂θ

and eφ = 1
R sin θ

∂
∂φ [6]. In this basis the two independent components of the strain hθθ

TT = −hφφ
TT and hθφ

TT can be

calculated using Equation 60, where i, j = θ, φ. The velocity and radius vectors, vi, rj , respectively, are given by

v =

√

m

l

[

− sin φex + (ǫ + cos φ)ey +
m

l

{

ex

[

−3ǫφ + (3 − µ

m
) sin φ − (1 +

21µ

8m
)ǫ2 sinφ +

1

2
(1 − 2µǫ

m
) sin 2φ − µǫ2

8m
sin(3φ)

]

+ey

[

−(3 − µ

m
) cos φ − (3 − 31µǫ2

8m
cos(φ) − 1

2
(1 − 2µ

m
)ǫ cos(2φ) +

µǫ2

8m
cos(3φ)

]

;

(66)

r = l

[

1 + ǫ cos φ +
m

l

[

−(3 − µ

m
) + (1 +

9µ

4m
)ǫ2 +

1

2
(7 − 2µ

m
)ǫ cos φ + 3ǫφ sin φ − µ

4m
ǫ2 cos 2φ

]]

−1

(67)

The components of radius and velocity in the new basis are found by taking the dot product of 66 and 67 with the
basis vectors, eθ and eφ. Using these results we found the general form of the strain in the new basis and substituted
different ǫ values to model the gravitational waveforms of stellar encounters with varying orbital shapes.

RESULTS

Since we are mainly interested in the effects of eccentricity on the shape of gravitational waveforms, rather than exact
numerical calculations of strain amplitude, we took the physical constants G and c to be 1 and used the parameter
values in Table II. We found that for all possible eccentricities, the strain amplitude for the hθφ

TT polarization remains

constant as φ varies. The resulting waveforms for the hφφ
TT polarization follow.

Figure 10 shows how drastically changes in ǫ effect the waveforms and maximum amplitudes in the φφ polarization.
Comparison of figures 4, 5, and 8 suggest that strain amplitude generally increases as ǫ increases, and increases
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FIG. 4: Gravitational waveforms of circular orbits with ǫ = 0. The angle from the observer to the orbital plane, θ, is π/4.
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FIG. 5: Gravitational waveforms of elliptical orbits with an eccentricity of ǫ = 0.2 (red), 0.5 (green), 0.7 (purple) where θ = π/4.
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FIG. 6: Gravitational waveforms of elliptical orbits with ǫ = 0.2 as θ varies. The red line represents θ = π/4, orange θ = π/6,
and blue θ = π/8.

dramatically when ǫ = 1. The parabolic waveform (ǫ = 1) was omitted from Figure 10 because the maximum
amplitude is so much larger than that of the other orbit types that the circular, elliptical, and hyperbolic waveforms
are obscured when plotted with the parabolic waveform. While θ has a much smaller effect on strain amplitudes than
the eccentricity, Figures 6, 7, and 9 show that larger values of θ yield larger maximum strain amplitudes. Our analysis
found that the strain amplitude for the θφ polarization is constantly 2µ/R, and has no dependence on θ, φ, or ǫ. This
could be due to the possibility that in an average over several wavelengths the wave amplitudes can cancel each other
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FIG. 7: Gravitational waveforms of parabolic orbits with ǫ = 1 as θ varies. The blue line represents θ = π/4, green θ = π/6,
and purple θ = π/8.
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FIG. 8: Gravitational waveforms of hyperbolic orbits with θ = π/4. The magenta line represents eccentricity ǫ = 1.2, the
purple line ǫ = 1.5, and the blue line ǫ = 1.7.
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FIG. 9: Gravitational waveforms of hyperbolic orbits with ǫ = 1.2 as θ varies. The magenta line represents θ = π/4, cyan
θ = π/6, and green θ = π/8.

out. This possibility should be investigated further in future work to determine the mechanism which leads to the
constancy of hθφ

TT .
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FIG. 10: Gravitational waveforms of varying eccentricities (ǫ) and a constant angle of the observer, θ = π/4. The orange line
represents a circular orbit with ǫ = 0, red an elliptical orbit (ǫ = 0.2), and magenta a hyperbolic orbit (ǫ = 1.2).

CONCLUSION

Quantifying the amplitudes of waves from different stellar interactions should help identify the source of gravitational
waves received by future detectors. While analysis based on classical Newtonian mechanics gives a basic picture of
gravitational waveforms from binary stellar encounters, post-Newtonian corrections improve the accuracy of the
waveforms by considering higher order relativistic effects. More accurate templates of GWs will help to determine the
sources of incoming signals. Our results suggest that the GW amplitude of binary stellar encounters to the O(ε2) order
increase with eccentricity, and jump up sharply for parabolic encounters at ǫ = 1. We also found that eccentricity has a
much more pronounced effect on the waveforms and amplitude than the angle of observation, θ. It is important to note
that only post-Newtonian corrections introduce this additional dependence on θ at all, while classical solutions depend
solely on the initial conditions of the stellar system. The obvious differences demonstrated here between waveforms
predicted by a classical approach and post-Newtonian models indicate that to effectively resolve the stochastic signal,
processing should use model waveforms which at least account for relativistic corrections.

Modeling gravitational waveforms could prove particularly useful for resolving the sources of GWs in the stochastic
background, since it is comprised of signals from many unresolved, uncorrelated sources. Determining whether
components of the background are from astrophysical sources such as the stellar interactions explored here or from
cosmological sources could yield interesting information about the early universe. Modeling gravitational waveforms
in order to analyze the stochastic background is also useful because detectors will receive data from the stochastic
background virtually constantly, while GW bursts from events such as black hole collisions have a fairly low incidence
rate. Further work could include higher order post-Newtonian corrections which would account for the effects of spin,
radiation reaction, and tidal effects, which could all possibly introduce significant changes in models of gravitational
waveforms and improve the accuracy of signal processing.
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