Glassy charge dynamics and magnetotransport in lightly doped La$_2$CuO$_4$

Dragana Popović

National High Magnetic Field Laboratory
Florida State University, Tallahassee, FL, USA

Collaborators:

I. Raičević, NHMFL/FSU, USA
C. Panagopoulos, Univ. of Crete, Greece
Nanyang Tech. Univ., Singapore
J. Jaroszyński, NHMFL/FSU, USA
T. Sasagawa, Tokyo Institute of Technology, Japan

Support at NHMFL:
NSF DMR-0403491,
NHMFL (NSF, State of Florida)
Motivation

- Doped Mott insulators
- \(T=0 \) insulator to (super) conductor transition?

Emergence of nanoscale inhomogeneities!

• (infinitely?) many possible arrangements of nanoscopic ordered regions with comparable energies \(\Rightarrow \) glassy dynamics
Motivation

- Doped Mott insulators
- $T=0$ insulator to (super) conductor transition?

[C. Panagopoulos and V. Dobrosavljević, PRB 72, 014536 (2005) and references therein]

Ground state: charge (Coulomb) glass at low x?

Popović Paris – Glassy ‘09
Motivation

- Doped Mott insulators
- $T=0$ insulator to (super) conductor transition?

Mott transition with disorder – theory: V. Dobrosavljevic et al., PRLs … (1999-2005)

MIT in a 2DES in Si at $T=0$
[Popović et al., PRLs from 2002 to 2007; many signatures of glassiness; Coulomb glass; $T_g=0$]

Glassy insulator: $|k_F| < 1$; “bad” metal

Metallic glassy phase

Metal

carrier density

n_c
metal-insulator transition
n_g
glass transition

Popović Paris – Glassy ‘09
Glassy charge dynamics in cuprates?
Nature of the ground state?

Glasses: - many metastable states
- slow, nonequilibrium dynamics

How to probe glassy dynamics?

• measure response of the system to some kind
 of a perturbation ⇒ slow, nonexponential relaxations

• fluctuations – provide complementary information (correlations)

For charge glass: transport (bulk probe; mean values of resistivity)
and resistance noise (fluctuations)
Lightly doped La$_2$CuO$_4$ - a good candidate (well characterized, disorder)

- Sr and Li (no magnetic moment) doped: similar magnetic behavior, but no SC in Li-LCO

La$_{2-x}$Sr$_x$CuO$_4$ in spin-glass phase (T_{sg} ~ 7-8 K)

x=0.03 in this talk:
La$_{2-x}$Cu$_x$Li$_{1-x}$O$_4$ in antiferromagnetic phase (T_f ~ 7-8 K)

Dielectric measurements: an electronic glass state
AF Li-LCO: Park et al., PRL 94, 017002 (2005);
x=0.03 LSCO: Jelbert et al., PRB 78, 132513 (2008)

Popović Paris – Glassy ‘09
Variable-range hopping (VRH): $R \propto \exp\left[\left(\frac{T_0}{T}\right)^n\right]$, $n=1/3$ (2D exponent)

Actually, it depends on how the sample is cooled…

Popović Paris – Glassy ‘09
History dependence in transport: zero-field cooling (ZFC) vs. field cooling (FC)

Difference between FC and ZFC resistance $R(B=0)$

- observed in both R_{ab} and R_c, for both $B||ab$ and $B||c$
- difference disappears at much lower T in ab sample

Signature of out-of-equilibrium dynamics

Onset $T < T_{sg} \approx 7$ K

Popović Paris – Glassy ‘09
Memory effects

(observed in both R_{ab} and R_c, for both $B||c$ and $B||ab$)

- higher B enable overcoming higher energy barriers
- $R(B=0)$ determined by the highest B previously applied - memory of magnetic history

Also, manganites: Levy et al., PRL 89, 137001 (2002);
YBCO: Ando et al., PRL 83, 2813 (1999)

Popović Paris – Glassy ‘09
Hysteretic behavior of the resistance

Memory in R wiped out for $T \geq 1K$, spin glass transition $T_{SG} \approx 7K$

- hole-rich regions between interacting hole-poor AF domains
- return point memory
- incongruent subloops \Rightarrow interactions between domains

$T_{onset} < T_{SG}$

Do the holes merely "follow" the spins?
Resistencia fluctuations (noise); LSCO

- noise Gaussian at “high” T (e.g. T > 0.18 K for R_{ab} noise)
- at low T, non-Gaussian noise
 metastable states (out-of-equilibrium)
Probability density functions (PDF) of fluctuations

Noise in R_{ab}

- Structure depends on the observation time – different states contribute \Rightarrow nonergodic

$T = 0.082$ K
$B = 0$ T

3 h intervals

$\Delta R / R(10^{-4})$
- increase sampling time to 12 hours, but never becomes Gaussian at low T

- nonergodic, does not reach equilibrium on experimental time scales at low T

Onset of glassiness in transport at $T << T_{SG}$: suggests spin and charge glass not directly related
Noise statistics: T and B dependence

- Power spectrum: $S_R \sim 1/f^\alpha$

- α increases as T is reduced; no effect of B!

fewer metastable states that dominate at low T in the exp. time window

- Slowing down of the dynamics as T→0

Popović Paris – Glassy ‘09
Second spectrum $S_2(f_2, f)$

- the power spectrum of the fluctuations of $S_R(f)$ with time

1) white (1-\(\beta\) =0) for uncorrelated fluctuators (Gaussian)

2) $S_2(f_2, f) \propto 1/f_2^{1-\beta}$ for interacting fluctuators (non-Gaussian)

Increase of correlations as $T \rightarrow 0$

Noise statistics independent of both B and magnetic history

Popović Paris – Glassy ‘09
(Partial) summary of noise results

- **Slowing down** of the dynamics as $T \to 0$

- **Increase of correlations** as $T \to 0$

Glass transition at $T=0$

- Noise statistics independent of both B and magnetic history (unlike conventional spin glasses) \Rightarrow charge, not spin!

- Onset of hysteretic and memory effects in magnetoresistance:
 $T_{\text{onset}} \ll T_{\text{sg}}$

\Rightarrow Charge glass transition $T_{cg} = 0$

[I. Raičević et al., PRL101, 177004 (2008)]

Popović Paris – Glassy ‘09
Scaling of the second spectra

- can distinguish between different models:
 - droplet approach
 - hierarchical, tree-like model

\(S_2 \) decreases with \(f \) for a fixed \(f_2/f \), consistent with droplet picture (short-range interactions)

Spatial segregation of holes as a result of competing interactions on different length scales

Cluster charge glass
Origin of large positive magnetoresistance at low T???

LSCO; R_c
$B\|c$ axis
$T=0.450K$

Subloops shifted vertically to 0 for comparison

Popović Paris – Glassy ‘09
Out-of-plane MR - LSCO

The pMR mechanism changes below ~1 K:

- Positive MR increases in magnitude again below ~1 K.
- Same sample: onset of charge glassiness below ~1K

Low T positive MR closely related to the onset of charge glassiness

High T – crossover to negative MR

Popović Paris – Glassy ‘09
In-plane MR - LSCO

High T – MR negligible
- negative below 10K
 (onset of spin glass order)
- isotropic
- reorientation of weak FM moments

Low T
Emergence of low-field positive MR at $T < 1K$

Popović Paris – Glassy ‘09
In-plane MR – LSCO, low T

- Strong positive MR at low T (below 0.5 K)
- Low-T positive MR coincides with the onset of charge glassiness

Only positive MR exhibits hysteresis

Positive MR - glassy features:
- History dependence
- Memory
- Hysteresis

In the same regime:
- Noise – glassy dynamics as $T \to 0$

Popović Paris – Glassy ‘09
Out-of-plane MR – Li-LCO

High T

- B || c
 - negative - steplike decrease (spin flop)
 - strong positive below ~ 12 K

- B || ab
 - negative (∝ B^2; smooth rotation of weak FM moments)

Low T

- B || ab: low-field positive MR below 3 K

[Similar to AF (x=0.01) LSCO: Ando et al., PRL 90, 247003 (2003)]

Popović Paris – Glassy '09
In-plane MR – Li-LCO

High T – negative MR
- $B \parallel c$ – steplike decrease
- $B \parallel ab$ – B^2 dependence

Low T
- low-field positive MR below $\sim 4K$

Popović Paris – Glassy ‘09
Li-LCO: glassy features in transport

- History dependent behavior

\[R_{FC} - R_{ZFC} \] decreases with increasing \(T \) and vanishes at a \(B \)-dependent \(T \)

- Memory – the highest applied field determines \(R(B=0) \)
- Hysteresis only in the region of (initial) positive MR
- Return point memory

Popović Paris – Glassy ‘09
Origin of the positive magnetoresistance

Li-LCO – insulating for all x → superconducting fluctuations not the origin

Exponential enhancement

\[R(B, T) = R(0, T) \exp\left(\frac{B^2}{B_0^2}\right) \]

not observed

Orbital effects not the origin

hole localization length much smaller than the magnetic length

Must be a spin related effect!!

Reorientation of weak ferromagnetic moments leads to

Negative, not positive MR

Remaining possibility: coupling of B to the spins of doped holes, which populate localized states within Mott-Hubbard gap U

Popović Paris – Glassy ‘09
Strongly disordered materials with Mott VRH and intra-state correlations (Coulomb repulsion U' between two holes in the same disorder-localized state)

- Spins of singly occupied states become parallel in strong enough B

Zeeman splitting blocks some hopping channels \Rightarrow positive MR

$U' >> T$

Positive MR in various nonmagnetic, disordered materials with strong Coulomb interactions attributed to this effect

Test this prediction:

All data in the regime of positive MR collapse onto one function of a single scaling parameter!

- Scaling works for both LSCO and Li-LCO
- It appears that the magnetic background remains inactive in this regime of T and B (frozen spins/AF domains; holes that “live” in domain walls – analogous to other disordered, interacting systems)

Popović Paris – Glassy ‘09
Conclusions

Lightly doped La$_2$CuO$_4$: two different transport regimes within the spin glass phase

1) “High T” < T_{sg}: - magnetic structure important \Rightarrow negative MR

2) Low T, $T \rightarrow 0$ limit (i.e. $T < 1$ K in practice):
 - glassy charge dynamics (noise); charge cluster glass, $T_{cg}=0$
 - positive MR with hysteresis and memory
 - magnetic structure not important, to leading order
 - U’ on disorder-localized state important (U’~20 K in LSCO)

As $T \rightarrow 0$, behavior characteristic of systems that are far from any magnetic ordering

Use hysteretic, positive MR as an easy tool for detecting charge glassiness confined to the domain walls: intrinsic or driven by disorder?

Popović Paris – Glassy ‘09