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The detailed behavior of tunnel diode LC oscillators is calculated by three different methods and 
compared with experiment. We present both analytic formulas and numerical methods which 
give corrections to the oscillator frequency calculated using the expression 1/(LC)1I2 and show 
that these corrections are often not negligible. The calculations also yield rf amplitude, bias 
current dependence, and other details necessary for the full realization of the performance of LC 
oscillators as transducers of pressure, temperature, and other physical quantities. 
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INTRODUCTION 

There have been many experiments, primarily at low 
temperatures, in which tunnel diode oscillators have been 
used to measure a primary experimental quantity. For 
example, they have been used to measure pressure,I-6 
dielectric constant,7-IO He-3 concentration,II.12 liquid 
level,13.14 plasma sheath capacitance,15 ordinary rf sus
ceptibilitY,16-22 NMR susceptibility, 23-25 magnetic spe
cific heat,26 kinetic inductance,27.28 penetration depth,29.30 
skin depth,30 transition radiation,31 and neutron flUX. 32 

Sometimes they are used as thermometers.4.16.18.19.22 
Invariably, the experimenter will assume that the oscil
lator frequency varies as l/(LC)1/2 and make rough argu
ments to justify the ignorance of corrections to this 
formula. Although, as we show later, this is often cor
rect, we feel that it is important to examine these 
corrections with greater care than has been done pre
viously by experimentalists7.9.17.29 and presented in en
gineering texts33- 38 and with greater emphasis on trans
ducer applications than has been done in existing the
oretical treatments.:19- 4:1 The work reported in this paper 
was inspired by an experiment30 to measure the surface 
impedance of high purity metallic rods suspended within 
the inductor of a tunnel diode oscillator. In that experi
ment the Q-dependent corrections have turned out to 
be about 5%-small but still significant. 

The proper design of high performance tunnel diode 
oscillators also requires a better understanding of the 
nonlinear effects discussed in this paper. An earlier 
paper44 gave rules adequate for low-frequency (f < 20 
MHz) oscillators with 0.001 ppm frequency stability, 
but restricted its mathematical discussion to the behavior 
very close to the threshold of oscillation. The extent 
to which those rules applied for stronger oscillations 
was not indicated. That weakness is remedied in this 
paper. The tools which we present here can also be used 
in the analysis of high-frequency circuits (20 MHz < f 
< 2 GHz) utilizing reentrant LC resonators,45 and can 
form the basis for a detailed analysis of noise effects. 

Whereas our discussion is given in terms of LC os
cillators which use tunnel diodes as the gain element, 
it is actually more broadly applicable since all oscillators 
possess similar properties. 

In the next section, we describe a general tunnel diode 
oscillator circuit which can be used to represent low
frequency oscillators with tapped or untapped multiturn 
inductors or high-frequency oscillators coupled to re
entrant LC resonators. The following sections describe 
three methods for modeling the circuit. The first method 
is a full numerical simulation using a large digital com
puter. Since this method is very time consuming and 
expensive, we then present an approximate numerical 
analysis method which is appropriate for use with a 
microcomputer. 46 Finally, we describe an analytical ap
proximation which produces formulas suitable for com
putation on a pocket calculator. The results of all meth
ods are compared with each other and with measure
ments on an actual oscillator.:Jo While the specific 
calculations are carried out for a low-frequency multiturn 
inductor oscillator, they apply quite well to high-fre
quency reentrant resonator oscillators when an equiva
lent to the tapping fraction is used to represent the 
coupling coefficient between the resonator and the diode. 
We will, however, defer to a future paper the specific 
subject of reentrant resonator tunnel diode oscillators. 

I. GENERAL EQUIVALENT CIRCUIT 

A general equivalent circuit which applies to a wide 
variety of tunnel diode oscillators is shown in Fig. 1. 
The dc bias current, Ibias. divides between the dc load 
resistor, R B , and the series circuit consisting of the 
tunnel diode, parasitic suppression resistor, R p , and the 
lower half of the inductor. A voltage, Vbias. appears 
across the circuit while, in the absence of rf oscillation, 
a smaller voltage, V do> appears across the tunnel diode 
and a current, Ido, passes through it. When there is rf 
oscillation the dc bias conditions are slightly altered due 
to a self-rectification of the rf currents by the diode. 
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FIG. 1. The general circuit of a tunnel diode oscillator with a tapped 
LC resonator. The components R., C;. and part of Cp represent the 
tunnel diode. 

This causes a hysteresis in the behavior of the circuit 
as the dc bias is changed. 

The main LC circuit is represented by a tapped in
ductance, L = LI + L2 + 2ML , and a capacitance, C. 
The quality factor, Q, of the resonator is given by Q 
= woLlR, where Wo = 21T'fo = 1/(LC)1/2, and R = RI 
+ R2 + 2MR is the sum of the resistances, RI and R 2 , 

representing losses associated with the inductor. M Land 
M R represent the mutual inductance and resistance be
tween the parts of the inductor. The precise definition 
of the tapping fraction, x, depends upon the type of 
analysis being performed and will be covered later. 

The dc I - V curve of the tunnel diode defines V do and 
a differential resistance, R nn , as functions of I do ' The 
instantaneous differential resistance, R n , and junction 
capacitance, Cj , are determined from the instantaneous 
voltage across the tunnel diode. 

The usual microwave equivalent circuit for the tunnel 
diode also has a series resistance and a series inductance. 
We have lumped the series resistance together with the 
negative resistance, and consider the series inductance 
negligible for the low-power « 1 00 J.L W) tunnel diodes 
we are using. It will not be difficult to include these 
additional components into the numerical simulation or 
numerical approximation analyses when high-frequency 
oscillators are considered and good measurements of 
their values are available. For this paper, however, we 
will not consider these components. Similarly, we will 
neglect an inductance in series with Rp which is likely 
to be important only at higher frequencies. The capaci
tance, C p, shunting the tunnel diode represents the paral
lel combination of the case capacitance of the tunnel 
diode and any intentional shunt capacitance added to 
help Rp reduce the high-frequency gain of the circuit 
and thereby suppress certain parasitic oscillationsY 

Finally, to achieve good isolation from external noise 
and impedance changes, the bypass capacitor, CB , is 
chosen to have an impedance several orders of magni
tude lower than Rn. For very low-frequency «2 MHz) 
oscillators, C B is actually replaced by a network to avoid 
the need for unreasonable values of capacitance.3o In 
this paper we can neglect it in our calculations. It need 
only be considered when calculating the rf output signal 
voltage from the rf diode current. 
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II. NUMERICAL SIMULATION 

The numerical simulation is a straightforward, brute
force integration of the simultaneous nonlinear differen
tial equations describing the circuit. It is accurate and 
makes few assumptions but is quite time consuming, 
expensive, and requires a large digital computer. A well
developed FORTRAN subroutine named DVDQ48 per
forms the integration. DVDQ is called by our smaller 
main program TDO, which has small subroutines for 
inductance calculations, interpolation, and Fourier 
analysis. 

TDO first reads the circuit parameters including the 
measured I - V curve data for the specific tunnel diode 
being considered. From the precise geometry of the 
inductor it then calculates49 the total inductance, L, and 
the separate inductances L I and L2 shown in Fig. 1. The 
mutual inductance between LI and L2 is given by ML 
= (L - LI - L 2)/2 and the tapping fraction by x = (L I 
+ M d/ L. Using a specified quality factor, Q, TDO then 
calculates the total rf resistance, R. The separate resist
ances, R I and R 2 , and mutual resistance MR are assumed 
to be the same fraction of R as L I , L 2 , and ML are of L. 

There are three coupled differential equations which 
govern the behavior of the circuit when C B is considered 
an rf short circuit. These equations may be written using 
three variables v, it, and i:v is the voltage across the 
diode in excess of the applied dc bias voltage; it is the 
current through resistor Rp into the tap of the inductor 
in excess of the applied dc bias; and i is the current 
through the main capacitance, C. These currents are 
shown in Fig. 1. By inspection one may write the loop 
equations as 

+ (L 2 + Md - + (R 2 + R I + - I t = , di M ). 1 I . d 0 
dt C 

(1) 

(2) 

and 

where 

Civ + V do ) = C jn /[1 - (v + Vdo)/Vjo ]112. (4) 

In Eq. (4), the depletion capacitance relation for the 
tunnel diode, C jO is the zero voltage junction capacitance, 
and Vio is the band gap voltage. The value of C jO is 
usually between 0.1 and 3 pF, but can be very different for 
diodes which are otherwise similar. The value for V jO , 

on the other hand, is a property of the semiconductor 
material and for germanium can be considered to be 
600 mY, roughly independent of temperature. 
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Equations (1)-(3) must be rearranged and the vari
ables changed slightly to make them more suitable for 
the numerical analysis. It is more convenient to calculate 
the corresponding charges and their derivatives than to 
use currents. We therefore introduce the variables q 
and qt which are related to i and it by simple differentia
tion with respect to time. It is also convenient to intro
duce functions F ( v) and G ( v) defined by 

F(v) = [d(V + V do ) - [d(Vdo ) = [d(V + V do ) - [do, (5) 

and 

The basic differential equations may now be rewritten 
in the form 

" 1 qt = -v-
L* 

(8) 

and 
v' = -[F(v) + q/]!G(v), (9) 

where the notation L* is used to represent L 1-x 2L, a 
frequent denominator. The highest order derivatives of 
each variable have been written on the left-hand side 
of these equations as required by DVDQ. Values for 
variables on the left-hand side at time t + dt are calcu
lated from values for the variables on the right-hand side 
at time t. In deriving Eqs. (7) and (8), we have made use of 
the assumption that R!IL! = R21L2 = MRIML = RIL. 

For the case when the diode is directly coupled to the 
top of the LC resonator, x = 1 and L * diverges. If R p 

is still nonzero,50 we have three new equations. Starting 
with Eqs. (1)-(3) and using a variable q! = q + qt in 
place of qt, but otherwise following similar steps as be
fore, we obtain: 

(10) 

(1t) 

and 
v' = -[F(v) - q' + ql']!G(v). (12) 

If there is no parasitic suppression resistor, Rp = 0, 
and the variables v andq are redundant since v = -qIC. 
We are left with only two equations: 

R I 1 
ql" = - L q! + LV, (13) 

and 
v' = -[F(v) + ql']/[G(v) + C]. (14) 

The integration is started by first setting the dc bias 
to the point of minimum magnitude of negative resistance, 
initializing the current through the capacitor to a plausible 
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value, setting all other variables and derivatives to zero, 
and guessing Q to be Rnolx2woL, where Rno is the mini
mum magnitude of the negative resistance of the tunnel 
diode. After integrating for four cycles, the growth or 
decline of the amplitude is used to provide a better guess 
of the Q according to the following relation: 

_1_ = _1_ + qnew ' - qOI/ 

Qnew Qold 7rqOlct ' 
(15) 

where q I new and q 'Old represent the peak positive ex
curs ions of q I during the present and previous cycles, 
respectively. All amplitudes of variables and derivatives 
are then scaled by a factor which leaves the maximum 
excursion of the rf voltage across the diode, Vmax , at 
1.00 m V. Two more complete cycles of oscillation are 
integrated followed by a further scaling of the amplitudes. 
This two cycle integration and scaling process is repeat
edly performed until the Q values change by less than 
0.01%. The Q and frequency shift from/o are then con
sidered to correspond to the true values at the threshold 
of oscillation (limit as Vrnax ---C> 0). 

A full simulation of a circuit consists of calculation 
of the Q' s and frequency shifts for a mesh of values 
of V do and Vrnax which spans the region of interest. For 
each point in the mesh, Fourier analyses·'>1 of the cur
rents it and i and voltage v are made using 100 sample 
points of a cycle of the steady-state solution. The dc 
components of it and v, ito and Vo, are used to calculate 
the true circuit dc bias parameters, [hias and V bias' using 
the following equations: 

The amplitude of the fundamental component of it 
allows calculation of the rf output voltage using C Band 
R B , while the amplitude of the fundamental component 
of i allows calculation of the rf magnetic field applied 
to a sample which might be placed within the inductor. 
A two-dimensional interpolation over the calculated 
points on the mesh finally allows these rf amplitudes, 
the Q, and the fractional frequency shift from 10 to be 
calculated as a functions of [hias and of each other. 

III. ASSUMPTIONS USED IN THE NUMERICAL 
SIMULATION 

It is useful to declare explicitly the assumptions used 
during the numerical simulation at this time: (1) The 
impedance of C R is small enough that it can be calculated 
adequately by neglecting RR, C B , and any reactances 
external to the circuit. (2) The series resistance and 
series inductance within the tunnel diode package can 
be neglected. (3) All losses in the LC resonator occur 
in the inductor and are distributed in the same ratio as 
L I , L 2 , and M L • (4) The dc resistance of the inductor is 
negligible. (5) There is no parasitic oscillation. 
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FIG. 2. The ac equivalent circuit used for the numerical and analytical 
approximation calculations. Zeros of the impedance Z(w, Rn} deter
mine the frequency and amplitude of oscillation. 

IV. NUMERICAL APPROXIMATION 

The methods we shall call numerical approximation 
and analytical approximation are based on the commonly 
used engineering approach of looking for a zero in the 
open-circuit impedance of the resonator. 52 Figure 2 
shows the equivalent circuit for the impedance to be 
calculated. The notations C; and Rn in the figure signify 
that these are the values ofCj(v + Vdo)andRn(v + Vdo ) 
averaged over one cycle of the rf voltage, v. 

For a particular frequency wand average negative 
resistance R,,, the impedance Z (w,Rn) will have a zero. 
In the numerical approximation this zero is found nu
merically, and in the analytical approximation a trun
cated series expansion of Z is solved. Rn is then related 
to the magnitude of v using the I - V curve of the particu
lar diode being considered. 

The numerical approximation begins with a calcula
tion of the zeros of Z using the value of C j at the 
dc bias point, C j ( V do)' A value for the amplitude of v 
is then guessed, and an integration performed over the 
diode I-V curve to obtain an average rf power, P, from 
which an estimate for R n, Rn.est. can be found using 
the relation 

- 1 v2 

R n .est = 2P' (18) 

It is important that P be found by averaging the prod
uct of the rf voltage across the tunnel diode multiplied 
by the rf current through it. 53 The dc bias power must 
not be included. 

New values of the amplitude of v are successively 
guessed until one is found that gives R n.est = Rn. With 
that value and Cj , a new calculation of the zero of Z 
must be made. These nested iterations are carried to a 
point of convergence within the roundoff error of the 
computer. The voltage across the diode is considered to 
have no harmonic content, whereas the harmonic con
tent of the diode current generated by the nonlinearity 
of the tunnel diode is decomposed by Fourier analysis. 
Equations (16) and (17) are then used to calculate Vbias 

and Illias' 

V. ASSUMPTIONS USED IN THE NUMERICAL 
APPROXIMATION 

In addition to the assumptions which applied to the 
numerical simulation, this numerical approximation 
method also assumes the following: (6) Nonlinear effects 
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can be adequately accommodated by the use of the av
erage value Rn. (7) The only important harmonic effect 
is that the diode nonlinearity generates harmonics in 
the diode current. (8) The mutual inductance between 
the two parts of the inductor can be neglected. 

VI. ANALYTIC APPROXIMATION 

For the analytical approach, we write the complex 
equation for the impedance as a function of the compo
nents, series expand appropriately, and solve. An ex
amination of Fig. 2 allows us to write the following equa
tion as our starting point. 

+ -------------------------------- (19) 

-------------------- +--------
R 11 + ----c=------------,=_ 

llRn + jw(Cp + Cj ) 

Since the algebra necessary to transform Eq. (19) into 
the desired answer is very involved, we will just out
line the calculation here. 54 For the case of x ~ 1, we 
expand Z in the following four small quantities: IRIIRn I 
< 0.00001, IwLI/Rnl < 0.01, IRp/Rnl < 0.01, and 
I wCpRn I < 0.1. We then solve for Rn and wand sim
plify using Q = woLIR, R = RI + R 2, L = LI + L 2, 
X = RI/R = LIIL, and Wo = 1/(LC)112. The result for Rn 
and w is 

(20) 

Q 

- - - - + -- + 0(10-) 
1 wo2R p

2Cp C 1 lIB] 
2 X2Q2 Q2 2 XQ2 

(21) 

For the case where x = 1, we use the small quantities 
IRIRn I < 0.0001, I wLlRn I < 0.01, and IRplRn I < 0.1. 
Similar calculations yield 

- 3w 2R 2C 2 + Q2W 2R 2C 2 _p + 0(10-3) C 2 ] 
o p pOP P C2 ' (22) 

w = woll _ ~ Cp _ woRpCp + ~ Cp2 _ ~ wo
2
R p2CpC 

2 C Q 8 C2 2 Q2 

- ~wo2R 2C 2!2.. - ~_1_ + 0(10-5)] (23) 
2 p p C 2 Q2 
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Comparison of Eq. (20) with Eq. (22) and of Eq. (21) 
with Eq. (23) shows that, without loss of accuracy, we 
may combine these pairs of formulas into the following 
single pair: 

R R 2Q L (I + 2 C" 3 2 C" 1 'j C" 
/I = - ,,- x Wo Xc - x C + '2 X' C 

- 3 2R 2C 2 - 2Q R C C" 4Q2 2R 2 Wo p" x Wo " p - + x Wo " 
C 

(24) 
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FIG. 4. Comparison of the experimental and simulation results for 
values of X2Q at the threshold of oscillation. 
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Forx = I,Q > loo,CplC < 0.01, and I RplRII I < 0.1, 
additional terms in the series of Eq. (24) are of the order 
of 1000 ppm, and additional terms in the series of Eq. (25) 
are of the order of 10 ppm. Similarly, for 0.15 > x > 0.05, 
Q> 1000, CplC < 0,0}, and IR)R"I < 0.1, the cor
responding values are 10 ppm and 0.01 ppm. We have 
not calculated any formulas which are valid for x <:g 0.05. 
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FIG. 5. Amplitude of the fundamental component of the current 
through the tunnel diode vs dc bias current as Q is increased beyond 
its threshold value. 
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Equation (25) is seen to have a term which varies as 
1/Q as well as terms with the expected l/Q2 dependence. 
If x = 1, then R p could be zero, and the 1/Q dependence 
would drop out. The Q dependence would then be as 
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FIG. 7. Amplitude of the fundamental component of the current 
through the inductor of the LC circuit as a function of the dc bias 
current. 
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FIG. 8. The variation of the fundamental component of the current 
in the inductor as the tapping fraction and Q are changed in a manner 
which keeps the rf power and nonlinear effects nearly constant 
(X2Q = constant). 

predicted by simple calculations. As a practical matter, 
however, low-temperature multiturn inductor circuits 
have Q values so high that if x = 1, the circuit would 
be greatly overdriven by any available tunnel diode, and 
nonlinear effects would be more important than the 
l/Q2 term. If, on the other hand, the diode impedance 
is matched to the resonator by letting x be less than 1, 
it will be necessary to have Rp nonzero in order to sup
press parasitic oscillations and the 1/ Q term will domi
nate. We therefore contend that for low-temperature 
circuits with multiturn inductors, there is never an actual 
circuit where the 1/Q2 term alone is applicable. For 
room temperature multiturn inductor circuits or for re
entrant resonator circuits, however, the value of QwL 
is so small that available tunnel diodes can be properly 
matched with x = 1 and the 1/Q2 term can dominate. 

In order to relate Rn to the amplitude of the rf current 
through the tunnel diode, we use a cubic approximation 
of the tunnel diode I-V curve. 

(26) 
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where V peak is the voltage of the current peak in the 1-V 
curve. 

This equation and the true / - V curve for the particular 
diode we consider in this paper are shown in Fig. 3. 

When the diode is biased at its inflection point, the 
amplitude of the rf current through it is then given by 

i rl = 21 V"" - Vpeak 1(1 - R,w/RII)'~' (27) 
I R" . 

In deriving this relation care has been taken to interpret 
Rn using Eq. (18) with R" = R".es(' 

The current through the inductor can be calculated by 
equating the power supplied by the diode with the power 
dissipated by the resistance ofthe resonator. The result is 

VII. ASSUMPTIONS USED IN THE ANALYTIC 
APPROXIMATION 

(28) 

FIG. 9. Relative frequency shift from!. = Y27T(LC)'12 as a function 
of the dc bias current for a tapping fraction of 0.0718. 

In addition to the assumptions made for the numerical 
simulation and numerical approximation methods, we 
have assumed that certain quantities are small and used a 
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FIG. 10. Comparison of measured fre
quency vs dc bias current with results 
calculated using the three methods. 
These curves are plotted in close prox
imity to allow comparison of their 
shapes. In actuality they are displaced 
from each other by several parts per 
million as is shown in Table 1. Differ· 
ences between the shapes of numerical 
and analytical approximation method 
results are, however, still too small to 
show in this figure. 
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FIG. 11. Relative frequency shift from!. vs dc bias current at a tap
ping fraction of 0.1558. 

cubic approximation to the I-V curve. These are de
tailed below Eq. (25) and need not be repeated here. 
In applications where they have values outside these 
limits, the results will certainly be less accurate although 
still useful. 

VIII. RESULTS 

We studied five different combinations of tapping frac
tion and parasitic suppression resistance: x = 0.0718, 
Rp = 2000; x = 0.1558, Rp = 2000; x = 0.25; Rp 
= 400 0; x = 1, Rp = 200 0; and x = 1, Rp = O. For 
all but the x = 0.25 case, we examined the entire region 
of oscillation using values of Q up to over twice the value 
of Q at the threshold. For the x = 0.25 case, we only 
identified the threshold and observed that a parasitic 
oscillation occurred for x = 0.25 and Rp = 200 O. The 
x = 0.0718 case was given particular attention since it 
has nearly the correct parameters for simulation of an 
actual oscillator for which we have extensive experi
mental measurements. 30 The remaining cases were cal
culated to aid in our understanding of tunnel diode oscil
lators and to compare with corresponding numerical 
approximation and analytic approximation calculations. 
For this purpose, the x = 1 cases are very useful, even 
though actual oscillators with such low Q would be of 
questionable value. 

Our results are illustrated graphically in Figs. 4-13 
and numerically in Table I. The figures show different 
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aspects of the numerical simulation with Figs. 4 and 10 
also showing experimental data, and Figs. 6 and 10 also 
showing comparisons between the numerical simulation 
and the numerical and analytical approximations. The 
table serves to illustrate the errors which result, if the 
numerical and analytical approximations are used in place 
of the full numerical simulation. 

In Fig. 4 we compare the oscillation threshold points 
calculated by the numerical simulation (crosses) with 
actual measurements (solid circles). Although the circuit 
bias current, I biaso which forms the abscissa can be ac
curately measured, the unloaded circuit Q is difficult to 
measure with better than 10% accuracy. When we did 
make passive measurements of the circuit Q in a sepa
rate run, we obtained values lower than those plotted 
for the data by 5%. Therefore, to accommodate this 
likely systematic error and to allow better comparison 
of the shapes of the calculated and experimental curves, 
we uniformly shifted all experimental Q values up by 5%. 
It can be seen that the agreement in the shapes is quite 
good, although below 340 /-LA, there appears to be a sys
tematic error. We believe that this is caused by slight 
differences between the true I - V curve and the I-V 
curve used by the simulation program which interpolated55 

between measured points spaced every 5 m V. With our 

• ~ 

-60000 

-70000 

-80000 

:0 -90000 
~ 

-100000 

-110000 

o = 5.16 

3.10 

2.80 -eZ.n 

x = 1.00 
Rp=ZOOO 

FIG. 12. Relative frequency shift from!. vs dc bias current at a tap
ping fraction of 1.000. Note how the ends of these curves turn in the 
opposite direction to that shown in Figs. 9 and 11 for lower values 
of tapping fraction. 
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confidence in the numerical simulation boosted by this 
and other tests, we believe that measurement of the bias 
characteristics and simulation of the oscillator may be a 
better way to determine the circuit Q than a direct ex
perimental measurement. The oscillator transforms the 
Q, with very little loading, to an effect in the frequency
bias characteristic. By measuring the oscillator drop out 
and restart bias points, we can observe changes in X2Q 

as small as 0.1 %. A direct measurement, on the other 
hand, must have rf cables coupled to the circuit, im
pedance measurements made by external instrumenta
tion, and calculated corrections. 

Whereas Fig. 4 shows the Q dependence of the thresh
old of oscillation, Fig. 5 shows the behavior of the am
plitude of the fundamental component of the current 
through the tunnel diode, 1,/, as a function of In;as for 
selected Q values. Figure 4 can be seen to be a slice 
through Fig. 5 at Id = 0 p.,A. The most striking feature 
of Fig. 5 is its multi valued nature. There exist regions 
(e .g., at 420 p., A and Q = 1000) where two amplitudes 
are shown for a single value of dc bias current. When 
this is the case, the lower amplitude is unstable and 
the oscillation will grow until the larger amplitude is 
attained. If, however, the oscillator were biased at 420 
p.,A, but not oscillating at all, it would not spontaneously 
start oscillating until the bias was lowered below 418 
p.,A. This is the hysteretic behavior mentioned earlier 
which is caused by the self-rectification of the rf current 
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x = 1.00 

Rp = 0.0 

400 420 440 

Fig. 13. This is the same as Fig. 12, ex
cept that the parasitic suppression re
sistance has been reduced from 200 11 
to O. By comparing this figure with Fig. 
12, one can see how a nonzero value 
for Rp narrows the range of oscillation 
while allowing a lower threshold Q value. 

by the nonlinearities ofthe tunnel diode. The other note
worthy features of Fig. 5 are the saturation at values 
for I d > 32 p.,A and the asymmetry about the threshold 
point of 346.8 p.,A. Both of these effects are the direct 
result of the shape of the tunnel diode I - V characteristic 
as may be seen by examination of Fig. 3 and noting that 
32 p.,A corresponds to an rf voltage of about 30 m V. 

Figure 6 shows a vertical slice of Fig. 5 at 346.8 p.,A 
(solid curve) together with equivalent results from the 
analytic (short dashes) and numerical approximations 
(long dashes). The primary error ofthe analytic approxi
mation is its use of a cubic approximation for the tunnel 
diode I-V curve. It is apparent when one compares the 
two curves in Fig. 3 that the cubic approximation forces 
the analytic approximation to underestimate I d' The 
numeric approximation is much better, but its coarse 
treatment of harmonic effects and neglect of mutual in
ductance cause it also to underestimate I d • 

The current through the inductor, iL , is shown in Figs. 
7 and 8. Figure 7 illustrates how iT. varies with dc bias 
and Q, whereas Fig. 8 shows how it varies with x for 
approximately constant values ofx 2Q. We have used Eq. 
(28) to compare iL with Id and find that it overestimates 
iL by only 7% when it is applied to all numerical simula
tion results, irrespective of x and Rpo 

The results describing the frequency vs circuit bias 
are shown in Figs. 9-13. Figure 9 shows the typical 
behavior for small values of x. The threshold point has 
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TABLE I. Comparison of the results obtained by the analytical approximation (A. A.), numerical approximation (N. A.), and numerical simulation 
(N .S.) methods. The x = 0.0718 circuit closely approximates the actual oscillator used in Ref. 30. 

(f - fo)lfo (ppm) id (/LA) 

x Rp (£1) Q A.A. 

0.0718 200 485 -230.3 
500 -228.8 
600 -218.9 
700 -211.3 
800 -205.5 
900 -200.8 

1000 -197.0 

0.1558 200 98.3 -1002.7 
102.8 -998.7 
123.3 -978.7 
143.9 -958.9 
164.5 -941.4 
185.0 -926.0 
205.6 -912.6 

0.2500 400 29.26 -4660. 

1.0000 200 2.77 -111239. 
2.80 -109651. 
3.10 -96141. 
3.61 -80204. 
4.13 -69450. 
4.64 -62085. 
5.16 -56614. 

1.0000 0 3.36 -73503. 
3.47 -70740. 
4.16 -58107. 
4.85 -50471. 
5.55 -45447. 
6.24 -42056. 
6.93 -39626. 

the greatest frequency shift from 10 = ~7T(LC)1/2. As 
the Q is increased the frequency approaches 10' The 
hysteretic behavior is evident as producing hooks at the 
ends of the curves. 

Figure to shows a comparison between equivalent 
results for x = 0.0718, Rp = 200 n, Cj = 3 pF, and Q 
= 600 for the three methods of calculations. Only the 
numerical simulation (solid line) has the qualitative be
havior evident in the curve representing actual measure
ments (short dashes) on a similar oscillator (x = 0.0718, 
Rp = 200 n, Cj = 1.5 pF, and Q = 585). The analytic 
and numerical approximations have the same shape (long 
dashes). These curves are plotted in close proximity 
to allow comparison of their shapes. In actuality they 
are displaced from each other by several parts per mil
lion as is shown in Table I. 

Figures 9, 11, and 12 illustrate how much the shape 
and spread of these curves of frequency shift vs dc bias 
current change as the tapping fraction is changed. 
Even the direction that the end points turn reverses as 
the tapping fraction is raised from 0.1558 to 1.0. The val
ues chosen for Q in these figures have been selected 
to maintain X2Q approximately constant, thereby better 
illustrating the effect of the nonlinearities. 

When x = I, there is usually no need for any parasitic 
suppression resistor. We have therefore shown the ef
fect of removing Rp from the circuit in Figs. 12 and 13. 
The width of circuit bias current over which oscillation 
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N.A. N.S. A.A. N.A. N.S. 

-230.7 -242.0 3.4 3.3 1.0 
-230.1 -239.8 8.9 10.3 9.1 
-220.1 -227.2 18.5 24.8 26.0 
-212.5 -217.5 20.8 28.9 30.6 
-206.6 -210.6 21.3 30.4 32.5 
-202.0 -209.8 21.0 30.8 33.5 
-198.2 -200.5 20.3 30.6 33.4 

-1006.2 -1107. 0.0 0.0 1.0 
-1006.6 -1097. 5.4 5.1 12.5 

-985.7 -1052. 17.9 23.8 26.0 
-965.5 -1013. 20.7 28.5 30.5 
-947.5 -981. 21.3 30.3 32.4 
-932.0 -956. 21.1 30.8 33.2 
-918.5 -933. 20.5 30.7 33.4 

-4743. -5050. 6.6 4.8 1.0 

-117143. -117500. 0.0 3.0 1.0 
-115353. -115520. 0.0 5.6 6.2 
-100277. -101250. 15.2 19.7 19.6 
-82829. -84250. 20.0 26.8 27.3 
-71253. -73480. 21.2 29.6 30.6 
-63416. -66200. 21.2 30.6 32.4 
-57642. -61000. 20.7 30.8 33.1 

-76033. -76200. 0.0 0.0 1.0 
-73161. -73400. 0.0 11.5 11.0 
-59634. -60500. 18.7 25.7 26.3 
-51553. -53200. 21.1 28.8 29.9 
-46276. -48600. 21.0 29.4 31.0 
-42730. -45600. 20.2 29.0 31.2 
-40198. -43600. 19.1 28.2 30.7 

occurs is broadened and the threshold Q is raised. At 
first glance, it is quite surprising that inserting a re
sistance into the circuit can allow the tunnel diode to 
make lower Q circuits oscillate. One does not get some
thing for nothing. The nonlinear effects become more 
severe at smaller amplitudes, and the frequency becomes 
more sensitive to the dc bias current. We do not recom
mend inserting a value for Rp solely to make a given 
tunnel diode drive a lower Q circuit. Instead, one should 
get a more powerful tunnel diode and use the smallest 
value for Rp which is necessary to suppress parasitic 
oscillations. 

Table I quantitatively shows how the analytic approxi
mation (A.A.), numerical approximation (N.A.), and 
numerical simulation (N.S.) methods compare in predict
ing the frequency shift and diode rf current when the 
diode is biased at its inflection point. It serves to let 
the user of the approximation methods estimate the di
rection and magnitude of the errors in the approximation. 
As can be seen in the table, for x < 0.1 or x = I and 
high values of Q, the numerical simulation and numerical 
approximation methods agree very well, particularly in 
the prediction of the frequency shift. 

Unintended oscillations at frequencies other than 10 
are called parasitic oscillations, since they are made pos
sible by stray capacitances and inductances and take 
power away or even inhibit the desired oscillation. At 
x = 0.25 and Rp = 200 n, we observed that TOO would 
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not converge to a steady-state solution. The reason was 
simply that Rp was too small to suppress a parasitic 
oscillation caused by resonance of L\ and C p at a fre
quency 16 times greater than 10' The integration mesh 
was too coarse to resolve the higher frequency of the 
parasitic oscillation. As soon as we used Rp = 400 n, 
TOO converged with no difficulty. The numerical and 
analytical approximation methods will reveal parasitic 
oscillations only when reformulated to examine specific 
parasitic resonances. 

IX. OTHER APPROACHES AND EXTENSIONS 

Although the methods and results presented in this 
paper are useful and practical, they can still be greatly 
expanded. We have not dealt with noise effects and 
have neglected some circuit parameters which will be
come important at higher frequencies. Furthermore, the 
analytic approach can be carried to higher orders by 
systematic methods described in the literature of non
linear periodic differential equations. 40.41,56-60 

It is clear that at very small amplitudes of oscillation, 
the frequency noise will be larger because of a poor 
ratio of signal power to noise power. Furthermore, at 
very large amplitudes the flat portions of the diode 1-V 
curve at the peak and valley will contribute additional 
shot noise. Also the nonlinearities will mix in off-reso
nance noise power. There must be an optimum amplitude 
for oscillation between 5 and 20 m V rms. It would be de
sirable to be able to calculate this optimum quantita
tively and confirm it experimentally. 

We believe that we have carried the frequency shift 
and amplitude calculations to the point where their use
fulness is limited by the accuracy with which the circuit 
parameters can be experimentally measured. At the fre
quencies where reentrant resonators can be conveniently 
used as LC resonators, precise characterization of the 
equivalent circuits of the diode, bypass capacitor, and 
resonator coupling loop are difficult even with the avail
ability of a microwave network analyzer. 

An important topic which we have not thoroughly 
investigated is the effect that parasitic resonances can 
have when their oscillation is just barely suppressed. 
How far under the threshold for oscillation must a para
sitic resonance be for it to have no important effect? 
Presently, we just assume that if parasitic resonances 
have Q values less than one half their threshold values, 
they will not significantly disturb the circuit. 

ACKNOWLEDGMENTS 

It is a pleasure to thank Dr. Marilyn Bishop for bring
ing to our attention the differential equation solution 
routine. The particularly useful comments of NBS re
viewers Robert D. Cutkosky and Dr. Gary P. Carver 
were appreciated. We also wish to acknowledge NSF 
Grant #DMR 74-20310 for supporting the experimental 
measurements and numerical simulation calculations 
when the authors were at the University of California, 
Irvine. 

722 Rev. Sci. Instrum., Vol. 52, No.5, May 1981 

, L. Mills and S. G. Sydoriak, Ann. Phys. (NY) 34, 276 (1965). 
2 John F. Jarvis, Dietolf Ramm, and Horst Meyer, Phys. Rev. 

170, 320 (1968). 
;] E. J. Yarmchuk and W. I. Glaberson, J. Low Temp. Phys. 

36, 381 (1979). 
I C. T. Van Degrift, W. J. Bowers. Jr., D. G. Wildes. and P. B. Pipes. 

Instrum. Soc. Am. Trans. 19, 15 (1980). 
, M. Sudraud and Eric Varoquaux. C. R. Acad. Sc. Paris 278,921 

(1974). 
6 Gregory Goeliner and Horst Meyer, Phys. Rev. Lett. 26, 1534( 1971). 
, C. Boghosian, H. Meyer, andJ. E. Rives. Phys. Rev. 146,110 (1966). 
" B. A. Wallace, Jr. and H. Meyer, J. Low Temp. Phys. 

15, 297 (1974). 
" Craig T. Van Degrift, "Dielectric Constant, Density, and 

Expansion Coefficient of Liquid He-4 at Vapor Pressure Below 
4.4K," Ph.D. thesis No. 74-19243 (1974). University Microfilms. 
300 North Zeeb Road, Ann Arbor, Michigan 48106. 

III A. Kakizaki, J. Low Temp. Phys. 24,67 (1976). 
II E. H. Graf, D. M. Lee. and John D. Reppy. Phys. Rev. Lett. 

19,417 (1967). 
'2 H. Dandache and A. Briggs, J. Low Temp. Phys. 29, 275 (1977). 
,;] Martin E. Banton. J. Low Temp. Phys. 16,211 (1974). 
'4 H. A. Notarys, Phys. Rev. Lett. 20, 258 (1968). 
'" B. M. Oliver and R. M. Clements. J. Phys. E (GB) 5, 718 (1972). 
'6 R. H. Willens, E. Buehler. and E. A. Nesbitt, Rev. Sci. Instrum. 

39, 194 (1968). 
17 R. B. Clover and W. P. Wolf. Rev. Sci. Instrum. 41, 617 (1970). 
IH R. T. Harley. J. C. Gustafson. and C. T. Walker. Cryogenics 

10,510 (1970). 
'9 K. Andres and E. Bucher. 1. Low Temp. Phys. 9, 267 (1972). 
21l F. Rothwarf and D. Ford, Rev. Sci. Instrum. 43, 317 (1972). 
2I F. Habbal, G. E. Watson, and P. R. Elliston. Rev. Sci. Instrum. 

46, 192 (1975). 
22 D. S. Greywall, Phys. Rev. B 15,2604 (1977). 
2;] J. Aslam and W. Weyhmann. Rev. Sci. lnstrum. 44, 71 (1973). 
24 F. N. H. Robinson, J. Phys. E. (GB) 10, 254 (1977). 
25 Craig T. Van Degrift and Donald B. Vtton, U.S. Patent No. 

4,087,738 (1978). 
26 A. T. Skjeltorp and W. P. Wolf, Phys. Rev. B 8, 215 (1973). 
27 J. W. Baker. J. D. Lejeune, and D. G. Naugle, J. Appl. Phys. 

45, 5043 (1974). 
2R J. D. Lejeune and D. G. Naugle. J. Low Temp. Phys. 22,425(1976). 
29 C. Varmazis and Myron Strongin, Phys. Rev. B 10, 1885 (1974). 
;]0 David P. Love. "Temperature Dependence of the Electronic 

Relaxation Time in Copper, Aluminum, and Potassium Determined 
from Changes in the Surface Impedance at Low Temperatures." 
Ph.D. thesis No. 79-06402 (1978), University Microfilms, 
300 North Zeeb Road, Ann Arbor, Michigan 48106. 

'" A. K. Drukier and L. C. L. Yuan. Nucl. Instrum. Methods 
138, 213 (1976). 

3' A. K. Drukier, J. Igalson, and L. Sniadower, Nucl. Instrum. 
Methods 154, 91 (1978). 

33 H. R. Lowry, J. Giorgis, E. Gottlieb. and R. C. Weischedel. 
"Tunnel Diode Manual" (Semiconductor Products Department. 
General Electric Company, New York, 1961). pp. 33-42. 

;]4 Woo F. Chow. "Principles of Tunnel Diode Circuits" (Wiley. New 
York, 1964), pp. 151-182. 

35 Anthony S. Manera. Solid State Electronic Circuits:for Engineering 
and Technology (McGraw-Hill, New York. 1973), pp. 614-623. 

;]" Kern K.N. Chang. Parametric and Tunnel Diodes (Prentice-Hall, 
Englewood Cliffs, New Jersey, 1964), pp. 157-163. 

'" D. K. Roy and B. R. Pamplin, Tunnelling and Negative Resistance 
Phenomena in Semiconductors (Pergamon, New York, 1977), 
pp.94-95. 

3R Walter A. Sowa and James M. Toole, Special Semiconductor 
Devices (Holt. Rinehart and Winston, New York. 1968), pp. 92-95. 

'" V. S. Andreyev, Radiotekhnika (Moscow). Trans. Radio Eng. 
25, 107 (1970). 

40 J. Chiba, K. Honma. and T. Takano, Denki Gakkai Ronbunshi 
92C, 384 (1972). Trans. E1ectr. Eng. (Jpn) 92, 122 (1972). 

4, S. Mahapatra and J. S. Joshi. Int. J. Electron. 35, 169 (1973). 
.. V. A. Kozlov. D. Ya. Tamarchak, and Yu. L. Khotuntsev, 

Radiotekh. Elektron. 19, 2002 (1974); Trans. Radio Eng. Electron. 
Phys. 19, 133 (1974). 

43 F. Kourzhil and V. Rzhichnyi, lzv. Vuz Radioelektron.19, 58 (1976). 
44 Craig T. Van Degrift, Rev. Sci. lnstrum. 46,599 (1975). 
45 Craig T. Van Degrift, Rev. Sci. lnstrum. 45, 1171 (1974). 
46 We performed these calculations using the PASCAL language and 

operating system (Univ. Calif., San Diego) on a North Star Horizon 
(Berkeley. California) microcomputer. Copies of our program are 
available. 

47 See Addendum 2 of Ref. 30 above. 
48 Fred T. Krogh, Report #NPO-U643 entitled "VODQ/SVDQIDVDQ. 

Tunnel diode oscillators 722 

Downloaded 25 May 2011 to 128.227.27.199. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions



Variable Order Integrators for the Numerical Solution of 
Ordinary Differential Equations," Jet Propulsion Laboratory, 
May 1, 1969. 

49 Frederick W. Grover, Proc. IRE 21, 1039 (1933). 
50 Even when x = 1, a nonzero value for Rp may be required to 

suppress parasitic oscillation of helical resonances in a multitum 
inductor. 

51 Forman S. Acton, Numerical Methods that Work (Harper & Row, 
New York, 1970), pp. 228-233. 

52 Maurice Yunik, Design of Modern Trar,sistor Circuits 
(Prentice-Hall, Englewood Cliffs, New Jersey, 1973), pp. 309-339. 

53 One might naively believe that R. should be the average of R. 
over one cycle of the rf, rather than defined through the power 
by Eq. (18). Further thought, however, shows that power is a more 
fundamental quantity than resistance and that resistance is only a 
convenient shorthand notation for power loss (when positive) or 
power generation (when negative). This is similar to the definitions 
of capacitance and inductance being based on energy storage by 
electric charges and currents rather than the conventional geometric 
formulations. If one tries to use the average of R., the divergences 
of R. at the peak and valley points of the tunnel diode I-V curve 
will be weighed too strongly. 

54 Details of the analytic calculations may be obtained from the authors. 

723 Rev. ScI. Instrum., Vol. 52, No.5, May 1981 

55 After all of the calculations by TDO were completed, we found an 
error in the interpolation routine which calculated I d ( Vd ) from the 
measured I-V curve data for the diode used in the experiment. 
Instead of performing the four point interpolation with two data 
points on each side of Vd , the routine used one point on one side 
and three points from the other side. The error thus incurred was 
quite small and nearly lost in the uncertainty of the data points. 
Nevertheless, when making comparisons between the numerical 
simulation and numerical approximation methods, it was quite 
important to use the same function Id(Vd ). We therefore 
intentionally used an identical erroneous interpolation when 
calculating I d( V d) for the numerical approximation. A recalculation 
of the numerical simulation with this interpolation error corrected 
would be expensive and not change any results significantly. 

56 Ali Hasan Nayfeh and Dean T. Mook, Non-linear Oscillations 
(Wiley, New York, 1979). 

57 Minoru Urabe, Non-linear Autonomous Oscillations-Analytical 
Theory (Academic, New York, 1967). 

58 Dragoslav D. Siljak, Non-linear Systems-The Parameter Analysis 
and Design (Wiley, New York, 1969). 

59 Austin Blaquiere, Non-linear System Analysis (Academic, 
New York, 1966). 

80 Nicholas Minorsky, Non-linear Oscillations (Van Nostrand, 
Princeton, New Jersey, 1962). 

Tunnel diode oscillators 723 

Downloaded 25 May 2011 to 128.227.27.199. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions


