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ABSTRACT

The utility of the TDR as an instrument in the study of magnetically ordered materials has

been expanded beyond the simple demonstration purposes. Results of static applied magnetic

field dependent measurements of the dynamic magnetic susceptibility, χ, of various ferromag-

netic (FM) and antiferromagnetic (AFM) materials showing a range of transition temperatures

(1-800 K) are presented. Data was collected primarily with a tunnel diode resonator (TDR)

at different radio-frequencies (∼10-30 MHz). In the vicinity of TC local moment ferromagnets

show a very sharp, narrow peak in χ which is suppressed in amplitude and shifted to higher

temperatures as the static bias field is increased. Unexpectedly, critical scaling analysis fails

for these data. It is seen that these data are frequency dependent, however there is no simple

method whereby measurement frequency can be changed in a controllable fashion. In contrast,

itinerant ferromagnets show a broad maximum in χ well below TC which is suppressed and

shifts to lower temperatures as the dc bias field is increased. The data on itinerant ferromag-

nets is fitted to a semi-phenomenological model that suggests the sample response is dominated

by the uncompensated minority spins in the conduction band. Concluding remarks suggest

possible scenarios to achieve frequency resolved data using the TDR as well as other fields in

which the apparatus may be exploited.
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CHAPTER 1. Magnetic Measurements

1.1 Introduction

Interesting quantities to measure for magnetically ordered samples include the magnetic

moment, M , the magnetic susceptibility χ, and the ordering wave vector ~q. By determining

these quantities and how they vary with temperature and applied magnetic field, information

regarding the nature of the interaction between the magnetic ions is obtained. For example,

suppose a sample of some material is cooled to low temperature in zero applied field. A

small external field is applied and the moment is measured as temperature is increased. If

the magnetic moment grows and then decreases again as the temperature increases, it is likely

there is a phase transition in the temperature region where the moment changes. Field cooling

through the transition while measuring the moment can provide hints to what type of order

exists. The presence or absence of magnetic hysteresis also provides clues as to the magnetic

structure. A feature in the magnetic susceptibility such as a peak, dip, or break in slope may

provide other clues as to the nature of the magnetic order.

No single measurement will provide all the information necessary to fully characterize a

sample. It is better to take a multifaceted approach and measure as many different properties as

time, money, and interest permit. On rare occasions a new measurement technique is developed

or an existing technique in one branch of physics is applied to a different phenomenon. In either

case the data have a high probability of being novel. Such novel data are often confusing and

require considerable effort to understand. The potential return is new insight into existing

physical phenomena. An attempt to understand radio frequency, magnetic susceptibility data

from a novel measurement technique is made in this work.

This chapter begins with a basic description of the more common measurements of mag-
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netic moment, neutron scattering, and conventional AC susceptibility. It will proceed to a

discussion of the various phenomena that may be explored with radio frequency susceptibility,

placing emphasis on those phenomena that are most relevant to this work. A description of

the technique used here (tunnel diode resonator) and representative data on five materials

concludes the chapter.

1.2 Conventional Magnetic Measurements

Conventional measurements are defined here as those measurements performed on com-

mercial equipment and common in the literature. There are a great many measurement tech-

inques at the disposal of the experimentalist. However, there are three primary measurements

by which pratically all magnetic information is gathered. These three are measurements of

static magnetic moment, ac magnetic susceptibility, and neutron scattering. Supplementing

these techniques are the slightly less common nuclear magnetic resonance (NMR), ferromag-

netic resonance (FMR), electron paramagnetic resonance (EPR), Mössbauer spectroscopy, and

microwave cavity perturbation. Each technique compliments the others and provides slightly

different information regarding the macroscopic or microscopic magnetic nature of the sample

under consideration.

Conventional measurements are extremely important because they offer data that are often

well–understood within the confines of current theories. Interpreting these data is usually

straightforward and allows for rapid and accurate comparison between different materials.

When data from conventional measurements differ from those predicted by extant theories, it

is an indication that some poorly understood physics might be at work.

1.2.1 Static Magnetic Moment and Susceptibility

Measurements of the static magnetic moment of a sample are the most common methods

of characterizing the magnetic properties of a material. Typically measurements of magnetic

moment are carried out in an applied static field. Static magnetic susceptibility, defined as χ =

M/H, is commonly reported for disordered samples. Through static moment measurements it
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is possible to determine the paramagnetic moment per magnetic ion (via static susceptibility),

saturation moment per ion, estimate the ordering temperature of the material, and evaluate the

aniostropy in a single crystal sample. A drawback to static measurements is that a bias field is

generally required for a measureable signal. In ferromagnetic materials at temperatures below

TC , the bias field acts to modify the domain structure so that a bulk moment is present in the

sample. For temperatures above TC in ordered materials or at any T is disordered materials,

the bias field opposes thermal radomization which leads to zero moment in the paramagnetic

state. A remenance measurement may be done in which a large bias field is applied and then

taken to zero. Subsequently, the moment is measured a a function of a different parameter.

Very often the additional parameter is temperature, but it could be any other controllable

parameter that may affect the magnetic moment of the sample.

1.2.2 AC Magnetic Susceptibility

In a dynamic measurement of magnetic susceptibility, a time varying magnetic field is

applied to the sample. The measured signal is obtained either through an induced voltage

in a coil (conventional AC susceptometry) or a change in the natural resonant frequency of

some portion of the measurement apparatus (microwave cavity perturbation and tunnel diode

resonator).

Low frequency AC susceptibility measures the response of a sample to a time varying

magnetic field which may be superimposed on a static magnetic field. Unlike static moment

measurements, it is not necessary that a field be applied to collect the data. The measurement

may be made in either a longitudinal or transverse mode. In a longitudinal measurement

the ac and static fields are coaxial, whereas in a transverse measurement the two fields are

perpendicular. Typically the AC field is limited in frequency to less than 100 kHz. The

frequency limit is caused by issues with phase noise and the difficulty associated with driving

a coil far from its resonant frequency. The amplitude of the alternating field may be anywhere

from 0.1-10 Oe. The fairly large drive fields are needed to provide an adequate signal to noise

ratio.
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Measurements of AC susceptibility have been useful in determining critical indices asso-

ciated with the second order para- to ferromagnetic phase change [Ho et al. (1981), Drobac

(1996)]. A major drawback of these techniques is that the drive field is typically on the order

of 0.1-10 Oe. Such a large probe field may overwhelm any fluctuations that exist, particularly

in the vicinity of a phase transition. Further, the driven coil method places a relatively low

upper limit on the frequency that can be used to test the system.

AC susceptibility may be carried out in either an amplitude domain or frequency domain

fashion. In an amplitude domain measurement the magnitude of the output signal is measured.

Usually the raw output signal is a voltage. The reliability of amplitude domain measurements

is limited by the waveform of the output signal. If there is significant noise or distortion in the

output signal, then there will be considerable uncertainty in the AC susceptibility. Frequency

domian measurements are relatively insensitive to the waveform of the output signal. Since a

frequency measurement is a counting of how often a particular event occurs in a given time

period, as long as there is no noise in the vicinity of the counting condition, this source of

uncertainty is removed.

Carrying out a frequency domain measurement requires precise knowledge of the natural

resonant frequency of the measurement apparatus. The sample under consideration is placed in

a cavity or coil. The sample properties under given field and temperature conditions determine

the resonant frequency of the cavity or coil. Most frequency domain techniques (i. e. NMR or

microwave cavity perturbation) rely on driving the oscillation with some external frequency

source. The frequency of the applied power is swept in an effort to locate the resonance.

The resonance is detected through a peak in the response of some detector vs. frequency. All

oscillators manifest a finite width in the response peak which is inversely propotional to the

quality factor of the system. To determine the resonant frequency via the sweeping method

with precision requires very high quality factors which may be obtained only with considerable

effort and expense. The gains inherent in a frequency domain measurement are offset by the

cost and effort required to perform them and the experimenter must decide if the exchange is

worthwhile.
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1.2.3 Neutron Scattering

Neutron scattering is a very powerful technique for determining the microscoic magnetic

structure of a magnetic material. The wavelength of low energy neutrons is on the order of

angstroms, which is the typical spacing between ions in a solid. The fairly close match between

neutron wavelength and ion spacing in a crystal permits the use of a beam of neutrons as a

probe of crystal structure. Neutrons are unaffected by the charge on the electrons in the lattice

and primarily scatter off the nuclei. The propensity for scattering off nuclei allows a neutron

to probe deep into the bulk of the sample. The neutron also has a magnetic moment, and

as such it is sensitive to magnetic structure. Through neutron scattering it is often possible

to determine the magnetic structure of an ordered sample from the observation of different

scattering profiles above and below the ordering temperature.

1.3 Radio–Frequency Susceptibility

Many physical phenomena are observable at radio frequencies, and some of these phenom-

ena have been explored quite extensively. Almost all of the explored rf properties are resonance

effects within the material. As such, they require frequency resolved measurements to deter-

mine a particular transition energy in the material. Useful data results from tracking how this

transition energy shifts with some adjustable parameter like temperature, pressure, chemical

doping, etc.

Increasing the frequency of the alternating field in ac susceptibility to 10 MHz allows for

the exploration of several effects not accessible at lower frequencies. These effects include

nuclear magnetic resonance, electron paramagnetic resonance, relaxation processes, domain

wall resonance, as well as a probe of resistivity through the normal state skin effect. In

conjunction with the normal state skin effect is the possibility of the rf field heating a metallic

sample. Table 1.1 summarizes the various effects observable at radio–frequencies.
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Table 1.1 Physical effects observable at radio frequencies.

Effect Typ. Freq. (MHz) Reference

NMR 10-100 Blundell (2001)

EPR ≥103 Blundell (2001)

spin–spin relaxation 104 Morrish (2001)

spin lattice relaxation 10−4–1 Morrish (2001)

domain wall resonance 1–50 Saitoh et al. (2004)

skin effect 1-103 Jackson (1998)

1.3.1 Normal State Skin Effect

An oscillating electromagnetic field is attenuated when it penetrates a metal. The attenua-

tion is due to the normal state skin effect. The characteristic length over which the attenuation

occurs is called the skin depth and it is denoted by δ. The skin depth depends on the resisi-

tivty (ρ) and permability (µ) of the metal, as well as on the frequency (f) at which the field

oscillates. δ is related to the previous three parameters by the following equation [Jackson

(1998)]:

δ =
c

2π

√

ρ

µf
. (1.1)

To see this, consider an oscillating electromagnetic field normally incident on a vacuum/metal

interface. Maxwell’s equations for this situation may be written as

∇× B =
4π

c
µJ (1.2)

∇ ·B = 0 (1.3)

∇× E +
1

c

∂B

∂t
= 0 (1.4)

J = σE (1.5)

where σ = 1/ρ is the conductivity. We can replace B with the vector potential by setting

∇× A = B. This changes Eq. 1.4 to

∇×
(

E +
1

c

∂A

∂t

)

= 0. (1.6)

The immediate consequence of this is that

E +
1

c

∂A

∂t
+ ∇φ = 0. (1.7)
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Provided there are no free charges, it is appropriate to set φ = 0, whence E = −1
c

∂A

∂t . Further,

by combining Eqs. 1.2, 1.5, and 1.7, and by exploiting the vector identity ∇ × ∇ × A =

∇ (∇ · A) −∇2A we arrive at

∇2A =
4π

c2
µσ

∂A

∂t
. (1.8)

If a plane wave magnetic field of the form Hx(t) = H0 cos 2πft is normally incident (in the

z direction) on the metal in question, continuity conditions require the parallel component of

H be conserved on crossing the boundary between the vacuum and the metal. Further, Eq.

1.8 requires that the magnetic wave in the medium have only an x component and travel in

the z. Provided the conductivity is constant in space, B (as well as H) will have the behavior

of A in Eq. 1.8. Therefore, in the medium it is expected that

Hx (z, t) = h (z) eiωt (1.9)

and
(

d2

dz2
− 4π

c2
iµσω

)

h (z) = 0. (1.10)

This problem has a common form with an expected solution h(z) = h0e
kz. Substituting this

gives the condition

k = ±(1 + i)
2π

c

√

µσf. (1.11)

In the above f = ω/2π is the frequency of the oscillating wave as measured in hertz rather

than radians per second. k has the dimensions of inverse length and characterizes the decay

of h in the medium. Consequently, we define δ = 1/k, arriving at the skin depth of the metal

as given in Eq. 1.1. Figure 1.1 is a schematic representing the decay of the magnetic field in

the metal. From here we can proceed to the calculation of the ac susceptibility of a metal.

Within the metal, we can write the vector potential of the decaying field as

A = −B
δ

2

sinh (2x/δ)

cosh (2R/δ)
ẑ (1.12)

where 2R is the thickness of the metal. Equation 1.2 allows for a relation between A and J,

after exploiting the previously mentioned vector identity.

∇2A =
4π

c
J (1.13)
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Figure 1.1 Schematic of decay of an oscillating magnetic field in a metal.
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This gives the current density in the metal as a function of position, or depth, as

J = B
c

4π

2

δ

sinh (2x/δ)

cosh (2R/δ)
ẑ (1.14)

The magnetic moment induced in the sample can be determined from

M = − 1

2c

∫

r × Jd3r (1.15)

Evaluating this over the limits 0 to R gives the following expression for the moment.

4πM =

(

Bδ

2R
tanh

2R

δ
− H

)

ŷ (1.16)

Differentiating once with respect to H gives the susceptibility from the sample as

4πχ =
µδ

2R
tanh

2R

δ
− 1 (1.17)

From Eq 1.17 we can extract some information that will be useful in analyzing the data.

First, in magnetically static samples with permeability µ = 1 the radio–frequency susceptibility

will track the resistivity. This applies to field or magneto–crystalline anisotropy saturated

magnetic samples wherein the ac–susceptibilitiy of the microscopic moments is essentially zero.

That this is so is evident from Fig. 4.6 (below) where the unusual T 5/3 behavior of ρ at low

temperatures in ZrZn2 is recovered. This fact has been exploited in the past to probe the Fermi

surfaces of metals [Coffey et al. (2000), Prozorov et al. (2006)] via the Shubnikov-de Haas effect

[Shoenberg (1984)]. (See Appendix C.) In magnetically active samples, however, the situation

is less clear due to the mixing of the magnetic permeability and resistivity through the product

µδ. There are two limiting cases. First, in the limit 2R << δ, the hyperbolic tangent goes

to zero linearly and the susceptibility reduces to 4πχ = µ − 1, which is the standard relation,

valid when the magnetization in a sample is uniform. This is the insulating regime, and the

resonator probes the response of the magnetic moments in the sample. In the other limit

(2R >> δ), the hyperbolic tangent term is very close to 1 and 4πχ = (µδ/2R) − 1. This is

a complicated case because there is a mixing of the permeability and the resistivity. Further,

substitution of 1+4πχ for µ is not valid as such a substitution requires the magnetization to be

uniform in the sample. This clearly is not the case since the applied field decays exponentially
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in the sample. This represents the skin depth limited regime, and here it can be argued that

the resonator probes the changes in resistivity concomitantly with changes in the magnetic

permeability. For ferromagnets that are far from the insulating regime, information regarding

the response of the magnetic moments can be obtained provided the temperature is close to TC .

In this temperature range the susceptibility grows rapidly, formally diverging at TC . Further,

ρ remains finite. This implies the skin depth goes very small and the hyperbolic tangent term

saturates to 1. In this case

4πχ =
c

4πR

√

ρ

f

√
µ − 1. (1.18)

This is seen by recognizing that the numerator of the coefficient on the hyperbolic tangent

term is µδ. Since δ ∼
√

µ−1 the product µδ ∼ √
µ.

1.3.2 Energy Scales Associated With RF Fields

Any magnetic field (static or oscillating) gives rise to a Zeeman splitting in the energy

levels of any magnetic moment. The amplitude of the Zeeman splitting is given by

UZeeman = ~mu · ~H (1.19)

where ~mu is the magnetic moment and ~H is the magnetic field. If µ is equal to one Bhor

magneton and H is one tesla then µH ≈ 5.79 × 10−5 eV. Comparing this to thermal energy

(kBT ) gives an equivalent temperature of about 0.67 K. For small magnetic fields, on the order

of 2.5 kOe or less, at temperatures above 2 K, the Zeeman energy is not expected to have a

considerable effect unless the magnetic moments are on the order of 10µB per ion as is the

case for trivalent holmium and dysprosium.

In addition to the possibility of a Zeeman energy, an oscillating electromagnetic field has an

energy associated with the frequency of oscillation. This is the energy of the photon associated

with the wave. For a wave with a frequency of 10 MHz, the energy is on the order of 10−8

eV. Comparing the photon energy to thermal energy results in an equivalent temperature of

approximately 10−3 K.

There is power dissipated in a metallic sample due to the screening from the normal skin

effect. An estimate of the order of magnitude of this power can be made by considering the
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energy density of the screened rf field. This is given by

ǫ =
B2

rf

8π
. (1.20)

Without knowledge of the magnitude of the screened field, it is impossible to determine the

energy density associated with the screening. However, the rf field used to measure χ in this

work has a peak amplitude of about 5 mOe. This magnetic field has an energy density on

the order of 1.5 pJ/cm3. For the working frequencies (107 Hz) and typical sample sizes (1

mm3=10−3 cm3) here, the power dissipation is on the order of 0.01 pW in a magnetically dead

sample. If there is significant magnetic permeability in the sample, this power can increase

(Appendix B) provided the heat capacity of the sample is low enough.

1.4 The Tunnel Diode Resonator

In order to measure the magnetic susceptibility at 10’s of MHz at tunnel diode resonator

(TDR) was employed. The TDR is a self-resonating LC circuit driven by a tunnel diode (TD).

The TD is a solid state diode with a heavily doped p-type terminal. The pn junction is of the

order of 100 Å, very narrow for a diode [Esaki (1976)]. The resulting device exhibits negative

differential resistance when biased within a certain range of voltages (Fig. 1.2). When biased

to this region, the TD can perform as a low current, alternating current power source. If we

consider a simple LC tank circuit the frequency of the ac power delivered by the tunnel diode

is determined by the frequency of the tank circuit. Indeed, it is this frequency matching that

is exploited in the use of a TDR. The main advantage of making measurements this way is

that inductance is placed on equal footing with capacitance. Commercial capacitance bridges

are capable of attofarad resolution. However, determining small changes in inductance is not

simple with commercial devices. By changing the measurement from a balance of inductances

to a direct measurement of resonant frequency, the sensitivity to changes in L, and hence

χ, is greatly improved. Further, the amplitude of the probe field is extremely small. The

biasing of the TD creates a small static field in the probe coil on the order of 30 mOe in the

resonators used here. Superimposed on this is a small ac ripple that is used as the probe field,

the amplitude of which is determined by the excursions up and down the I − V curve. The
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deviations in current from the bias point are estimated to be ≤ 5 µA. The resulting ac field is

then ≤6 mOe peak to peak. This is 1.5 orders of magnitude smaller than the typical excitation

fields used in conventional low frequency ac-susceptibility.
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Figure 1.2 I–V curve for BD3 tunnel diode. Negative differential resistance

is evident for bias voltages between 50 and 250 mV. Optimal

biasing is for this particular diode is in the range 60-100 mV.

The TDR was developed in the 1970’s. Many different groups constructed these devices

and suggested measurements including NMR spectroscopy [Aslam and Weyhmann (1973)] and

magnetic susceptibility [Clover and Wolf (1970), Habbal et al. (1975), Fox and Trefay (1975)].

The main development of the TDR as an ultraprecise scientific instrument was carried out by

VanDegrift in the middle 1970’s [VanDegrift (1975a)]. The primary use of the TDR in that work

was in measuring dielectric constants. VanDegrift demonstrated that part per billion sensitivity

could be achieved through careful design. To date, the apparatus has not been employed by

many research programs. Those programs that do employ some version of the TDR are largely

concerned with precise measurements of temperature dependent magnetic penetration depth
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in various superconductors. A few other groups are concerned with measuring normal state

magnetic effects, however their work is largely confined to thin films and nanoparticles. In the

course of this work, the TDR has been employed to measure many different types of compounds

and effects including ferromagnetic and antiferromagnetic conductors and insulators [Vannette

et al. (2008d)], charge ordering effects in Ba2NaOsO6, spin glass behavior in LiV2O4 [Zong et al.

(2008)], ferroelectric transitions, quantum oscillations in metals [Prozorov et al. (2006)], and the

penetration depth in a host of superconductors (see Table 1.3). The main thrust of this work,

though, was the study of the differential magnetic susceptibility (χ = ∂M/∂H) of magnetically

ordered samples as functions of temperature and field in an attempt to extract information

regarding phase changes and the different responses of local and non-local ferromagnets.

C1

R1 C2R2

R3

TD
LP

LT

CP

To

Control Electronics

Figure 1.3 Schematic of the basic tunnel diode resonator circuit.

The basic tunnel diode resonator circuit is shown in Fig. 1.3. The primary inductor and

capacitor are LP and CP respectively. The sample is placed in the bore of LP . Inductor LT is

the tap coil, and it serves to shunt some of the power supplied by the diode to ground, thereby

permitting extremely weak resonance. The weaker the resonance is, the fewer harmonics are

present. Too many higher harmonics distort the waveform. If the harmonics are particularly

strong, the wave distortion can be significant enough to lead to miscounts in the frequency

measurement. The purpose of C1 and C2 are to decouple the tank circuit from the rest of the

electronics. C1 is typically on the order of 50 pF while C2 is on the order of 10 nF. At 10 MHz

the rf impedance of C1 and C2 are 340 Ω and 1.5 Ω. Thus, C2 is practically a short to ground

for the rf signal and only a very small portion is passed back up the line by C1. R1 and R2
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act as voltage dividers. R3 is termed the parasite resistor. It acts in concert with the tap coil

to reduce unwanted oscillations. R1 has a typical value of 1.4 kΩ, R2 and R3 are 300 Ω. The

primary coil is wound of 40 AWG enameled copper wire. It is on the order of 60 turns with

one wire diameter space between each turn. This allows the coil to more closely approximate a

pure inductance by limiting the stray capacity from adjoining turns. Primary coils are wound

on a former (usually the chuck end of a drill bit) lightly coated with grease and wrapped in

polyester flim. Once the coil is made, it is encased in Stycast 1266 epoxy (or similar) and after

curing, is removed from the former. The polyester film is removed from the inside wall of the

coil, and ideally the primary is just a coil of copper magnet wire suspended by an epoxy film.

The tap coil is wound in a similar manner as the primary. The main difference being that the

tap is left on a fused silica tube of the same outer diameter as the primary coil former. Also,

the tap coil is not set in epoxy. Rather varnish is used to keep the turns of the tap glued to

the tube. This allows for easy modification of the tap coil inductance. The ratio of LP :LT is

about 3:1. For optimal performance this ratio must be tuned experimentally for each circuit

by overtapping the circuit (i. e. intentionally making the tap coil too large) and then through

successive cool downs, gradually unwinding the tap until the circuit spontaneously resonates

only below about 40 K. TDR’s will operate at room temperature, but the sensitivity drops

from 0.001 ppm to about 1-10 ppm. This latter sensitivity is still quite good, but by operating

at low temperatures with marginal oscillations, the greater sensitivity is achieved. The value

of CP is chosen to keep the resonance less than 50 MHz. This range was chosen because

amplifiers and filters that operate well at these frequencies may be easily acquired. Further,

keeping the frequency below gigahertz limits problems associated with transmission line and

connector size effects that may occur when the wavelength of the radiation approaches the

typical dimensions these components. In principle, the TDR can be made to operate at higher

frequencies, even into the GHz regime. This was not attempted here, but is a direction of future

work (see Ch. 6). Thermal cycling of the circuit is expected to alter the resonant frequency

of the circuit. The expansion and contraction of the coil, wires, solder joints, and commercial

components all contribute to this effect. Fig. 1.4 plots the empty coil resonant frequency of the
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4He for nine consecutive runs over the course of two months. The uncertainty in the recorded

empty coil resonance is on the order of 0.5 Hz for the system used here. The resonance stays

constant to within about 0.5% (±50 kHz on 28 MHz) in this time period. Between the first run

shown and the unshown zeroth run the coil had to be removed to recover a sample that had

dropped off the sample holder. The empty coil resonance of this zeroth run was 27.76 MHz.

Having to resolder these joints resulted in a change in the resonance on the order of 2%. This

suggests that provided no modifications to the circuit are made, including fixing poor solder

joints, the resonant frequency is very robust to thermal cycling. These variations come from

28.42
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987654321

cooldown number

Figure 1.4 Empty coil resonance vs. thermal cycle count.

the binary state thermal cycling of the cryostat. During a given run the circuit is held at a

constant, low temperature while the sample temperature is varied. Between runs the entire

apparatus is warmed to room temperature. The cycling from high to low temperature results

in small changes in the quality of the solder joints, the position of the coil, the parameters of

the circuit elements, etc. leading to slightly different resonant frequencies during each run.

Three different TDR’s were employed to collect data for this work. Specific details regarding

design and construction can be found in Appendix A. Table 1.2 gives the name that is used

in this work and presents the basic information for each system.

A gap in the accessible temperatures exists between 200-293 K. Due to the competing
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Table 1.2 TDR Specifics

System Coil Volume (mm3) fres (MHz) Temp. Range (K)
3He 31 14 0.5-100
4He 33 28 2-200

Inferno 250 36 293-800

requirements, this temperature window is particularly difficult to access with this technique.

Chapter 6 discusses various modifications and improvements that may be attempted to gain

access to more information regarding the radio frequency properties of materials.

The versatility of the TDR is evident from the material phase space that can be explored.

Table 1.3 lists the samples measured in the course of this work. Most are unrelated to this

dissertation, however the list is meant to demonstrate the breadth of application of the tech-

nique.
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Table 1.3 Samples run in TDR during this project. Tchar. is a characteristic

temperature for the sample.

Sample Tchar. Reference

Ferromagnets

CeAgSb2 9.8 K Prozorov et al. (2006)

GdPtIn 68 K Vannette et al. (2008a)

CeVSb3 4.5 K Vannette et al. (2008d)

YTiO3 27 K

EuS 16 K

Gd 280 K

ZrZn2 28 K Vannette and Prozorov (2008)

Ni 760 K

GdFe2Zn20 (& dopings) ≤86 K Vannette et al. (2008d)

Fe1/4TaS2 160 K Vannette et al. (2008e)

NiMnSb 730 K

Antiferromagnets

SmAgSb2 10 K Prozorov et al. (2006)

MnSi 35 K

FeGe 279 K

Multiple Transtitions

CeSb many Vannette et al. (2008d)

Ce3Al11 6 & 3.8 K Vannette et al. (2008d)

Y9Co7 6.7 K & 2.9 K Gordon et al. (2008b)

Superconductors

MgB2 38 K Martin et al. (2008)

Re3W 7.4 K Zuev et al. (2007)

YNi2B2C 16 K Prozorov et al. (2007)

ErNi2B2C 12 K & 6 K Prozorov et al. (2008a)

ErRh4B4 10 K & 1.9 K Prozorov et al. (2008b)

TmNi2B2C 10.2 K & 1.8 K Prozorov et al. (2008a)

Ba(Fe1−xCox)2As2 22 K Gordon et al. (2008a)

Bi-2201 35 K

OsB2 2.1 K Singh et al. (2007)

Other Materials

LiV2O4 2 K Zong et al. (2008)

Ba2NaOsO6 6 K

HoMnO3 many Vannette et al. (2008b)

DyMnO3 many Vannette et al. (2008b)

“Fe8” none Engelhardt et al. (2007)

Mo72Fe30 1 K Schroder et al. (2008)

Mo72Cr30 none Schroder et al. (2008)

CaFe2As2 170 K

Cu none
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1.5 Measuring Changes in Magnetic Susceptibility

In exploiting a TDR the measurement of magnetic susceptibility is shifted from the am-

plitude domain to the frequency domain. As has been stated previously, amplitude domain

measurements depend on the actual amplitude of the signal and, in AC measurements, the

shape of the signal waveform. Frequency domain measurements are only concerned with count-

ing how many times something happens in a given period. As such, frequency measurements

are quite easy to do with very high precision. Since the TDR is a device that is locked onto

the resonant frequency of the LC tank circuit, changes of the resonance can be linked directly

to either the inductor (as is done here) or the capacitor. Careful design and good thermal sta-

bility can result in a circuit that resonates in the megahertz band with a stability of 0.05 Hz

over hours to days. If field or temperature is varied, the resonant frequency shifts due to the

changing properties of the sample. It is this shift in resonance that is measured to determine

the dependencies of χ on these two parameters.

The frequency of oscillation for an inductor-capacitor circuit with inductance L and capac-

itance C is given by

f0 =
1

2π
√

LC
(1.21)

If the inductance changes a small amount to L + ∆L the new frequency can be written as

f0 + ∆f =
1

2π
√

(L + ∆L)C
(1.22)

Expanding this expression for small values of ∆L and canceling gives

∆f ≈ −1

2

∆L

L
f0 (1.23)

From the definition of self inductance

L =
dΦ

dI
(1.24)

where Φ is the integrated magnetic flux in the coil and I is the current producing the flux. For

an empty coil

Φ = B0Vc (1.25)
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Here, Vc is the coil volume. In cgs units, the flux density B0 is equal to the magnetic field H0

in vacuum. Introducing a sample with zero demagnetization changes the flux density in the

volume of the sample. This is accounted for by imagining the sample replaces the initial flux

with a new value given by Φ′ where

Φ → Φ′ = B0Vc + (Bs − B0)Vs. (1.26)

The flux density in the sample, Bs, is given by the usual relation

Bs = H0 + 4πMs (1.27)

where Ms is the sample magnetization per unit volume. Substituting this results in the fol-

lowing expression for flux in the inductor:

Φ′ = H0Vc + 4πMsVs (1.28)

Writing the derivative of Φ′ with respect to current as

dΦ′

dI
=

dΦ′

dH

dH

dI
(1.29)

allows the new inductance to be written as

L′ = (Vc + 4πVsχ)
dH

dI
(1.30)

The first term is the empty coil inductance and the second is the change caused by the sample.

Returning to equation 1.23,

∆f

f0
≈ −1

2

Vs

Vc
4πχ (1.31)

The above expression relates the measured change in frequency to the real part of the ac-

susceptibility of the sample. Equation 1.31 shows that the change in frequency, ∆f , is pro-

portional to the base frequency, f0. This means a larger signal is expected with higher base

frequencies, all other things being equal. If there is non-zero demagnetization for the sample

the true susceptibility (χt) may be written as

χt =
χm

1 + 4πNχm
. (1.32)
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χm is the measured susceptibility as related to the measured frequency shift given above.

Thus, the change in resonant frequency is directly proportional to the dynamic magnetic

susceptibility of any sample placed in the coil. An increase in magnetic susceptibility results

in a decrease in resonant frequency and vice versa.

It is worth noting that this technique is not well suited to measuring the absolute value

of χTDR in most samples. This is because a conversion from frequency shift to χTDR de-

pends on accurate knowledge of the sample volume, sample demagnetization factor N , and

the effective coil volume. Demagnetization factors may be estimated for each sample, but N

is only analytically defined for ellipsoids. Effective coil volume is, in general, different from

actual coil volume due to the effect of the materials required to mount the coil and sample in

place. The main use is to measure changes in the properties relative to some arbitrarily chosen

reference value. Thus, this technique is good for determining the general dependencies of ρ

and χ on temperature and field. It is possible to determine the absolute value of the measured

χTDR, but this value depends on the sample size, shape, and resistivity in addition to the

response of the microscopic moments. Care must be taken when comparing the results of such

measurements across different samples to choose samples that are of similar size and shape.

Maintaining a consistent geometry across different samples maintains a consistent coefficient

linking frequency shifts to susceptibility. This permits a more accurate comparision between

samples of different compositions.

Bearing the preceeding paragraph in mind, it is possible to determine a figure for χTDR in

real units by performing a pullout measurement. From Eq. 1.31 there are four quantities which

must be known to allow for an estimate of the absolute value of χTDR. The sample and coil

volumes can be determined by direct measurement. Determining the empty coil resonance, f0,

and the change in resonance caused by the sample, ∆f , require extracting the sample from

the coil while the circuit is held at the operating temperature. This can be done and the

mechanism by which to do it was installed in one of the three systems used to collect data part

way through this study. Since the derivation of Eq. 1.31 was carried out in cgs units, absolute

values of χTDR will be determined in these units.
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In practice one measures the difference, df , between the circuit frequency, fres and a local

oscillator, fLO (df = fLO − fres). The local oscillator frequency is set higher than the circuit

resonance (fLO > fres). In this way an increasing susceptibility is marked by an increasing df .

Further, an increasing resistivity results in an increasing df since the skin depth increases with

the resistivity resulting in decreased diamagnetic screening.

1.6 Representative TDR Data

Data on a set of rare–earth transition metal compounds (RAgSb2, R =Y, Ce, Sm) are

presented. These compounds were chosen based on their magnetic ordering properties. YAgSb2

is not magnetically ordered. CeAgSb2 manifests a canted antiferromagnetic order at 9.8 K.

The canting of the Ce moments gives rise to a net magnetic moment, so it shows ferromagnetic

order along a particular crystallographic axis. SmAgSb2 manifests pure antiferromagnetic

order at approximately 10 K. Data from these three related systems form a baseline to which

other compounds will be compared.

Myers et al. (1999b) studied the tetragonal RAgSb2 family of compounds. These com-

pounds manifest a variety of magnetically ordered states. In particular, CeAgSb2 shows a

canted antiferromagnetism lying in the ab plane at approximately 9.8 K. The canting of the

antiferromagnetic moments manifests itself as a ferromagnetic component along the c axis.

SmAgSb2 undergoes a transition to simple antiferromagnetic order at approximately 10 K. The

non–magnetic YAgSb2 allows for a study of how the presence of magnetic moments and/or

magnetic order affect properties like resistivity and heat capacity. One sample of each of these

three compounds was studied in the TDR to observe how the rf susceptibility differs across

the three magnetic flavors (ferromagnetism, antiferromagnetism, and non–magnetic).

Figure 1.5 compares scaled susceptibility of Y–, Ce–, and SmAgSb2 vs. temperature in the

range 3–15 K as measured in the TDR. All thre data sets are shifted so that the low temperature

data overlap. YAgSb2 shows a monotonic behavior through the entire temperature regime. The

yttrium data appears noisy compared to the other two data sets. In fact, all data sets have

approximately the same level of noise. Due to the small variation in the measured susceptibility,
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the yttrium data had to be magnified by a factor of approximately 100 so that the variation in

χ with temperature could be discerned. SmAgSb2 also manifests monotonic behavior through

the entire temperature range. However, at approximately 9 K there is a sharp break in the

slope of the χ vs. T graph. This temperature corresponds to the Nèel temperature, below

which antiferromagnetic order sets in. In a magnetically ordered state conduction electrons

can no longer scatter off ionic moments. The loss of this scattering mechanism generally leads

to a decrease in the measured resistivity. Contrary to the other two compounds, CeAgSb2

manifests non–monotonic behavior over the reported temperature range. At approximately

9.8 K a sharp peak in χ is observed. The peak in χ is associated with the increase in spin

susceptibility due to strong ferromagnetic correlations. Below the ordering temperature the

cerium compound exhibits a decrease in the measured susceptibility due to the loss of spin

disorder scattering.
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Figure 1.5 Scaled comparison of Y–, Ce–, and SmAgSb2 χ vs. T data.

Static moment measurements of antiferromagnetic compounds show that the moment in-

creases as the Néel temperature is approached. This is often reported as an increase in the
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susceptibility of the compound. Similar increase in moment is observed in ferromagnetic ma-

terials as the Curie temperature is approached. However, the TDR data shows that the two

different magnetic orders show different rf susceptibilities. The observed difference can be

qualitatively understood based on the following argument. The perturbation field from the

TDR coil is very small, being less than 5 mOe. The existence of magnetic order at a finite

temperature implies an interaction between the moments in the sample. The strength of that

interaction must be on the order of the thermal energy present at the ordering temperature.

The perturbing field causes a change in the direction of a particular moment, tending to align

the moment with the field. Near an ordering temperature the internal interactions between

the perturbed moment and its neighbors dominates the response of the system. When the

interaction is ferromagnetic neighboring moments have an energy advantage if they align with

the perturbing field as well. This sets up a positive feedback, and the TDR sees a dramatic

increase in the susceptibility of the material. Conversely, if the interaction is antiferromagnetic

individual moments will tend to align so that there is no bulk magnetization in the sample.

The TDR then sees no increase in χ, and the response through the transition is to follow the

resistivity.

The differing measured susceptibilities across the three rare–earth silver diantimonides are

taken as standards to which other results may be compared. Comparison with these standards

will offer an initial interpretation of a given set of data. A sharp peak in χ at a particular

temperature is associated with the onset of ferromagnetic order. A dramatic drop in χ at

a particular temperature is associated with antiferromagnetic ordering in a metallic sample.

Temperature dependent χ that manifests no obvious features will be taken to mean the sample

shows no magnetic order.

1.7 Summary

Radio–frequency suscpetibility measurements provide data not accessible through other

means, but the convolution of resistivity and magnetic spin responses in metals complicates

the measurement and analysis process. It is possible to circumvent these problems through
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careful choice of samples. The tunnel diode resonator is a method whereby extremely precise rf

χ data may be collected. It was shown that there are stark differences between ferromagnetic,

antiferromagnetic, and non–magnetically ordered metals. In the following chapters an attempt

will be made to understand the differences in the measured χ of various samples.
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CHAPTER 2. Local Moment Ferromagnets

2.1 Introduction

In this chapter the nature of local moment ferromagnets is explored. These are systems

wherein the magnetic moment is strongly localized around a particular ion or particular ions

in the crystal. Typically the 4f rare earth systems are considered local moment systems as

the f electrons responsible for the atomic magnetic moment are buried deep in the core of the

electron cloud.

2.2 Basics of Magnetism

Experimentally, it is known that the magnetic susceptibility, χ = ∂M/∂H, of a collection

of non-interacting spins varies inversely with the temperature T of the system.

χ =
C

T
(2.1)

C is called the Curie constant and its magnitude depends on the strength and number of the

individual moments in the system.

The genesis of this dependency is in the Zeeman energy for a free spin in a magnetic

field, UZ = −µBH · (L + g0S) where µB = eh̄/2mec is the Bohr magneton and g0 = 2(1 +

α/2π + O(α2) + ...) ≈ 2 is the electronic g-factor. α is the fine structure constant, given by

e2/h̄c ≈ 1/137. Due to the small size of µB (≈ 5.8 × 10−4 ev/T), this energy is usually small

compared to all other energies under consideration. The problem may then be handled using

perturbation theory. If the exact eigenstates for the system in the absence of the magnetic field

are known, second-order perturbation theory may be used to determine the change in energy
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due to the magnetic field [Ashcroft and Mermin (1976)].

∆Un(H) = µBH· < n|L + g0S|n > +µ2
B

∑

n 6=n′

| < n|H · (L + g0S)|n′ > |2
En − En′

(2.2)

The second term in equation 2.2 is the Van Vleck paramagnetic susceptibility. If the second

term is small compared to the first, then the ground state energy can be rewritten via the

Wigner-Eckhart theorem as

< JLSJz |L + g0S|JLSJ ′
z >= gJ(JLS) < JLSJz|J|JLSJ ′

z > . (2.3)

In the above, gJ is the Landé g-factor given by

gJ(JLS) =
3

2
+

1

2

[

S(S + 1) − L(L + 1)

J(J + 1)

]

(2.4)

if g0 = 2. Once the energy of the system is determined, the magnetization and magnetic

susceptibility may be calculated from

M = −N

V

∂F

∂H
(2.5)

and

χ =
∂M

∂H
= −N

V

∂2F

∂H2
(2.6)

In equations 2.5 and 2.6, F is the free energy which can be calculated from

e−βF =
J
∑

Jz=−J

e−βgJµBHJz , β =
1

kBT
. (2.7)

Using this, the magnetization may be written as

M = −N

V
gJµBJBJ(βgJµBJH). (2.8)

BJ(x) is the Brillouin function [Blundell (2001)] with x = βgJµBJH.

BJ(x) =
2J + 1

2J
coth

(

2J + 1

2J
x

)

− 1

2J
coth

(

x

2J

)

(2.9)

The Brillouin function is a hyperbolic tangent for a spin-1/2 system and evolves to the Langevin

function

L(x) = coth x − 1

x
(2.10)
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for a classical, or infinite, spin system.

Often measurements are taken in the limit of small x, i. e. low field and high temperature.

Under either condition of J → 1/2 or J → ∞ this results in a linear dependence of magnetiza-

tion on field. Therefore, the magnetic susceptibility, χ, of non-interacting, free spins is given

by Curie’s Law:

χ =
C

T
(2.11)

where C is the Curie constant, given below.

C = NA
(gJµB)2

3

J(J + 1)

kB
(2.12)

In many magnetically active samples, a plot of 1/χ vs. T gives a straight line with positive slope,

C. Comparing the measured slope with the predicted response allows for the determination of

an effective paramagnetic moment per ion or formula unit, peff , defined as

peff = gJ [J (J + 1)]1/2 (2.13)

Doing so allows Eq. 2.12 to be rewritten as

C = NA

p2
effµ2

B

3kB
. (2.14)

Usually, this form of the susceptibility is sufficient, however at low temperatures with sensi-

tive measurements, it is useful to know the leading field correction to the free spin susceptibility.

Purely physical intuition would suggest that the application of an external field should reduce

the susceptibility at a given temperature. A Taylor series expansion of hyperbolic cotangent

gives

coth x ≈ 1

x
+

x

3
− x3

45
+ ... (2.15)

Since the magnetization is proportional to coth(αH), and the susceptibility is the first field

derivative of magnetization, the leading correction to χ due to magnetic field is proportional

to −H2. It is therefore expected that the field dependent behavior of free spins will show an

initial decrease in χ as the field is increased.
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When interactions between magnetic moments are significant, magnetic order can result.

Depending on the nature and strength of the interaction ferromagnetism (all moments align-

ing in the same direction), simple antiferromagnetism (individual moments lie on one of two

antiparallel sublattices with each sublattice carrying the same moment), or other types of

magnetic structures can be realized at sufficiently low temperatures. A second effect of the

interactions is to modify the paramagnetic Curie law behavior in susceptibility (Eq. 2.11) to a

Curie-Weiss type given below.

χ =
C

T − θ
(2.16)

θ is a characteristic temperature that may be positive or negative. Positive values for θ generally

give rise to ferromagnetic ordering, while negative values indicate antiferromagnetic order. The

ordering temperature often is approximately equal to the absolute value of θ, however this is

not always the case.

Ordering in local moment systems is usually modeled by an exchange interaction. The

interaction of one moment with all of the others is assumed to be of a pairwise form with the

energy of the interaction given by

U = −ΣJijSi · Sj (2.17)

where the sum is taken for i 6= j. Jij is called the exchange integral and its sign and magnitude

determine the nature and strength of the interaction. For Jij > 0 the energy is minimized when

the moments are parallel and ferromagnetic ordering is preferred. If, only nearest neighbor

interactions are considered then the problem is greatly simplified.

A second common simplification is the mean field approximation. In this model an individ-

ual moment interacts with an effective field produced by all of the other moments. The mean

field model offers a simple method for explaining the Curie-Weiss law. If a magnetic field is ap-

plied to a sample of interacting magnetic moments, then within the mean field approximation

the magnetization can be written as

M = χ (Happ + Heff ) . (2.18)
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The effective field is assumed to be proportional to the magnetization (Heff = λM). Substi-

tuting this for Heff and replacing χ with a Curie law temperature dependence allows one to

solve for M (H,T ).

M =
CH

T − Cλ
(2.19)

This magnetization leads to a mean field susceptibility of

χ =
C

T − Cλ
(2.20)

The above equation for χ predicts that the susceptibility should diverge as T → Cλ. Comparing

2.16 with 2.20 it is seen that θ = Cλ. Hence, it is also possible to determine the magnitude of

the mean field parameter, λ, from a measurement of the paramagnetic susceptibility.

A connection between the mean field expression in Eq. 2.19 and the Brillouin or Langevin

equations (Eqs. 2.9 and 2.10, respectively) can be made [Spaldin (2003)]. Taking the Langevin

case the magnetization of a paramagnet can be written as

M = NmL(x) (2.21)

where x = mH/kBT = βgJµBJH. However, under the assumptions of the mean field the-

ory, the magnetization is also given by M = Heff/λ. Further assuming that the field is

given entirely by the molecular mean field implies the magnetization is a linear function of T .

This follows from the expression for x which shows that Heff = xkBT/m. This allows the

magnetization to be written as

M =
Heff

λ
=

xkBT

mλ
(2.22)

These two equations may be solved graphically for a given temperature to determine what

values of M are permitted. This is done for three different temperatures in Fig. 2.1. For

all three temperatures, M = 0 is a solution. It is the only solution for high temperatures.

When T = TC the slope of the linear mean field magnetization matches the initial slope of

the Langevin paramagnetic function. For sufficiently low temperature, there are two solutions.

The non-zero one is a result of the ordering. It is possible to relate the mean field parameter

λ with the ordering temperature. If Eq. 2.10 is differentiated with respect to x it is seen that
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Figure 2.1 Plot of Langevin function (dashed curve) and mean field mag-

netization at different temperatures (solid lines). Intersections

of the lines with the curve correspond to simultaneous solutions

of Eq. 2.21 and M = Heff/λ.
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at x = 0 the slope of the curve is Nm/3, using the simplified x given above. When the slope

of the linear curve matches this initial Langevin slope the temperature is TC . Therefore, in

the Weiss mean field approach the ordering temperature is given by

TC =
Nm2λ

3kB
. (2.23)

The resulting mean fields for realistic saturation moments and ordering temperatures are 104

kOe. At the time Weiss introduced his theory it was unclear how such large fields could

be generated. Later, Heisenberg showed that the mean field does not really exist. Rather

the ordering comes from a combination of quantum mechanical and electrostatic exchange

interactions between the electrons. A very simple argument can be given to justify the existence

of a magnetic ordering from electrostatic effects. As the electrons are fermions, the pairwise

wavefunctions must be antisymmetric under exchange of the particle indices. Also, since each

electron carries the same charge there is a repulsive force between them. The electrostatic

energy is minimized by separating the electrons. An antisymmetric in space wave function is

zero at the origin. Such a function tends to maintain a separation between the two electrons.

To satisfy the overall antisymmetric nature of the paired wave function, the spin part must

be the symmetric triplet state for two spin-1/2 particles. Therefore, electrostatic interactions

combined with quantum mechanics allows for energy difference between magnetic states.

In metallic rare earth compounds exhibiting magnetic order the magnetic interaction is

often mediated by the conduction electrons via the Ruderman-Kittel-Kasuya-Yoshida (RKKY)

mechanism. In this interaction the local ionic moment polarizes the conduction electrons, and

this polarization oscillates as a function of distance. In this model the interaction, J , between

two local moments sitting at sites Ri and Rj is given by

J(Ri − Rj) ∼ F (2kF |Ri −Rj |) (2.24)

In the above, kF is the Fermi wavevector and F (x) is given by

F (x) =
x cos x − sinx

x4
(2.25)

which is plotted in Fig. 2.2 .
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Figure 2.2 Plot of the RKKY function. Positive values correspond to fer-

romagnetic coupling while negative correspond to antiferromag-

netic coupling.

In insulating compounds where there are no conduction electrons to mediate the exchange.

One form of Jij coupling is the so-called ‘superexchange.’ The superexchange is a method

whereby two magnetic ions separated by a non-magnetic ion interact. Even though the com-

pound under consideration is an insulator, if the valence electrons can ‘hop’ from one ion to

another they delocalize and lower their kinetic energy. This reduction due to delocalization

is reminiscent of the particle in a box where the energy levels vary inversely with the linear

dimensions of the box. In general, superexhchange favors antiferromagnetism over ferromag-

netism.

In ferromagnetically ordered samples application of a magnetic field of sufficient strength

will saturate the moment. This occurs because all of the magnetic spins align with the field

and there is no longer an increase in M with increasing H. The sample moment can be divided

into moment per spin, that is

M = Nµs. (2.26)

In strict local moment systems the saturated moment per ion will be the same as the effective
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paramagnetic moment per ion (peff/µs = 1). Rhodes and Wohlfarth (1963) pointed out that

this is not the case for all ferromagnets and used it to categorize magnetic materials. Some

magnets are known to have much smaller saturation moments when compared with their

paramagnetic moments. These are the candidate itinerant magnets, discussed in Ch. 4.

In the absence of pinning effects, at zero kelvin a small bias field applied along the ordering

axis is sufficient to completely saturate a ferromagnetic material as required by the third law

of thermodynamics. In this case all of the local moments point in the same direction and the

system is in its ground state. In an Ising system, if the temperature is raised slightly, the

first change that occurs is one spin will flip so it points antiparallel to all other spins. This is

presumed to be the first excited energy state as the flipped spin will result in an increase in

exchange energy and it represents the lowest increase available. Each spin in the lattice will

have an equal probability of being the one that is flipped, so the location of the flipped spin

is expected to wander about the lattice. The most probable mechanism for this traveling spin

inversion is from neighbor to neighbor as the exchange force aligns the reversed spin. This

propagation is a spin wave and only certain wavelengths are permitted based on the boundary

conditions of the crystal. These long wavelength, low energy collective excitations reduce the

low temperature magnetic moment more effectively than through considering single particle

effects alone. In principle the effects of spin waves may be observable in TDR data, particularly

frequency resolved data, but this is not the goal here. The present discussion of spin waves is

motivated by a desire to understand collective excitations in itinerant systems as described by

the spin fluctuations theory.

Working in a spin-1/2 system with z nearest neighbors, and considering the Hamiltonian

to consist of the exchange term only,

H = −J
∑

i6=j

Si · Sj (2.27)

where S are the Pauli matrices it is possible to determine the energy spectrum of the spin

waves. It is convenient to introduce to raising and lowering operators S± defined by

S±
i = Sxi ± iSyi. (2.28)
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If |ξα > represents the spin up state (with the z axis as the quantization axis) and |ξβ > the

spin down it can be shown that

S+|ξβ >= |ξα > (2.29)

S+|ξα >= 0 (2.30)

S−|ξα >= |ξβ > (2.31)

S−|ξβ >= 0 (2.32)

Sz|ξα >=
1

2
|ξα > (2.33)

Sz|ξβ >= −1

2
|ξβ > (2.34)

Therefore, the kets |ξk > are not eigenkets of the raising and lowering operators. The Hamil-

tonian (Eq. 2.27) can be rewritten as

H = −J
∑

i6=j

[

1

2

(

S+
i S−

j + S−
i S+

j

)

+ SziSzj

]

. (2.35)

Based on the assumed ground state, its eigenfunction can be written as

|ξ0 >= |ξα1ξα2ξα3 · · · ξαN > (2.36)

Applying the Hamiltonian in Eq. 2.35 to this ground state gives

H|ξ0 >= −J
∑

i6=j

[

1

2

(

S+
i S−

j + S−
i S+

j

)

+ SziSzj

]

|ξ0 > . (2.37)

The effect of the first two terms it to flip a reversed spin. Since there are no reversed spins in

the ground state, these terms contribute nothing. Only the third term gives a non-zero result:

H|ξ0 >= −1

4
NzJ |ξ0 > . (2.38)

Moving to the first excited state, with one reversed spin allows for a determination of the

reversal’s behavior. If the reversed spin is located at the m-th atom, the first excited state

may be written as

|ξm >= |ξα1ξα2 · · · ξα(m−1)ξβmξα(m+1) · · · ξαN > . (2.39)
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Operating on |ξm > with Eq. 2.35 shows that all terms contribute to the new energy.

H|ξm >= −J
∑

[

1

2

(

S+
i S−

j + S−
i S+

j

)

+ SziSzj

]

|ξm > (2.40)

The first two terms yield null vectors when operating on all spins except the mth and (m+1)st.

The last term has a nonzero contribution from the remaining (N − 2) spins given by

−J
∑

SziSzj|ξm >= −1

4
Jz(N − 2)|ξm > (2.41)

where the z on the right hand side is the number of nearest neighbors. Taking the remaining

spins with the first two terms in Eq. 2.40 gives

−J
z
∑

i=1

1

2

(

S+
mS−

m+1 + S−
mS+

m+1

)

|ξm >= −
z
∑

i=1

J |ξm+i > . (2.42)

The sum in the above equation is over the z nearest neighbors. The result is like this because

the second term gives a null vector again, but the first term moves the reversed spin by one

site. The SziSzj term contributes an energy of

1

2
Jz|ξm > (2.43)

when operating on the mth and (m + 1)st spins. The net result is

H|ξm >=

(

−1

4
JNz + zJ

)

|ξm > −
z
∑

i=1

J |ξm+i > . (2.44)

It is obvious that |ξm > is not an eigenfunction of H. The effect of the hamiltonian is to move

the reversed spin, allowing it to propagate through the lattice. Therefore an eigenfunction of

H may be formed by a linear combination of the N functions represented by |ξm >, or

|Ξ >=
∑

cm|ξm > . (2.45)

The coefficients cm are given by

cm = Ameik·Rm (2.46)

where Rm is the position vector of atom m. Imposing periodic boundary conditions (cm =

cm+N ) the components of k are confined to particular values. This is analogous to the classic

particle in a box problem with solutions of the sort

kiNixmn

2π
= 0;±1;±2; · · · (2.47)
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Ni is the number of lattice sites along the i direction and xmn is the distance between those

sites. The eigenfunctions have wavelike properties and operating on Eq. 2.45 with Eq. 2.35

gives

H|Ξ >= E|Xi >= (E0 + zJ) |Ξ > −J
∑

eik·r|Ξ > . (2.48)

r is the vector between the reversed spin and one of its nearest neighbors, and the sum is taken

over all nearest neighbors. The energy of the spin wave is

E − E0 = J(z −
∑

eik·r). (2.49)

For small k (low energy) this gives

E − E0 =
1

2
J
∑

(k · r)2 . (2.50)

For lattices with cubic symmetry this reduces to

E − E0 = Jk2a2 (2.51)

where a is the lattice spacing. Associating this with the usual quantum mechanical energy for

a wave gives

h̄ω = Jk2a2 (2.52)

Since the TDR measures the ‘bulk’ susceptibility, it is not feasible to try to map out spin-wave

dispersion relations. However, if a material exhibits gaps in its spin wave spectra, then it may

be possible to detect these gaps with frequency resolved measurements.

The free energy of a system is the difference between the internal energy and the entropic

energy.

F = U − TS − M ·H (2.53)

Various derivatives of the free energy correspond to different thermodynamic quantities. En-

tropy is the first derivative of the free energy with respect to temperature, and heat capacity

is the second.

Of particular interest for magnetic systems is the magnetic energy M ·H. The negative of

the first derivative of F with respect to H gives the magnetization, M .

− ∂F

∂H
= M (2.54)
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Taking the derivative of M with respect to H gives the magnetic susceptibility, χ.

χ =
∂M

∂H
= − ∂2F

∂H2
(2.55)

Experimentally it is seen that certain thermodynamic quantities either grow very rapidly

in the vicinity of a phase transition or have a step-wise change at Tc. The transition is

classified based on which derivative (first, second, third, etc.) of the free energy manifests

a discontinuity. The para- to ferromagnetic phase transition is usually second order, so the

magnetic susceptibility is one of the diverging quantities. Application of a small field will tend

to weakly align the moments in the direction of the field. As the temperature approaches

TC the exchange interaction grows in importance relative to the thermal randomization, and

the alignment of a few moments in one direction will induce other moments to align as well.

Thus, for a given applied field the response of the magnetization is amplified when compared

to the non-interacting case. The mean field theory derivation of the magnetic susceptibility

leading to the Curie-Weiss law accurately recreates this divergence. This is a tautology in some

sense, as Weiss developed his theory to account for the magnetic order and rapidly growing

susceptibility at the transition temperature.

Magnetic susceptibility is usually thought of as the zero field limit of dM/dH. Here the

term susceptibilty refers to the local slope of the M–H curve, that is dM
dH at a non–zero field.

This suggests measuring χ in an applied magnetic field. Adhering to the ferromagnetic case,

applying a magnetic field will suppress the growth of χ(T ) near the phase transition, turning

it into a local maximum near TC . Further, the applied field shifts the maximum to higher

temperatures. The static field adds an additional Zeeman energy to the problem which makes

it easier for the moments to order resulting in the shift in temperature. Further, the energy

splitting between the spins parallel and antiparallel to the field makes it more difficult for a

perturbing field to induce a change in magnetization. This is what causes the field suppression

of χ.

Landau developed a very simple model to show how a second order phase transition can

occur [Landau (1937)]. He assumed there was a phase transition at some temperature, Tc,

characterized by an ‘order parameter.’ The order parameter is some quantity that is zero
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for T > Tc and continuously grows from zero to some saturation value as the temperature

is lowered below Tc. Associated with the order parameter is a conjugate field. In general

terms, the response of an order parameter to changes in its conjugate field is termed the

susceptibility. In ferromagnets the order parameter is the magnetization. The field conjugate

to magnetization is the magnetic field, H. The response of the magnetization to changes in

the applied field is the usual susceptibility, χ. If Ms is taken as the saturation value then the

reduced order parameter, m, and the reduced temperature, t, can be defined as

m =
M(T )

Ms
(2.56)

and

t =
T

Tc
. (2.57)

For t < 1 the system is in the low symmetry, ordered phase, while for t > 1 it is in the

high symmetry, disordered phase. If we are concerned with magnetization, the energy of the

system cannot depend on whether m is positive or negative. These only indicate the direction

the magnetization points relative to an arbitrary refrerence. Assuming the free energy can be

expressed as a polynomial in m, symmetry requires that no odd powers of m appear. The free

energy can then be written as

F (t,m) = F0(t) + A(t)m2 +
1

2
B(t)m4. (2.58)

The prefactor of 1/2 on the quartic term is placed for later convenience. F0(t) contains all

temperature dependence not associated with the magnetization. In order to determine the

equilibrium value of m, the free energy must be minimized with respect to m. Thus, ∂F/∂m =

0 and ∂2F/∂m2 > 0.

∂F

∂m
= 2A(t)m + 2B(t)m3 = 0 (2.59)

∂2F

∂m2
= 2A(t) + 6B(t)m2 > 0 (2.60)

From Eq. 2.59 m = 0 and m2 = −A(t)/B(t) are the two solutions. If m = 0, then Eq. 2.60

requires A(t) > 0 to assure a minimum. This corresponds to the case when t > 1. If m 6= 0

then substitution of −A(t) = B(t)m2 into the second derivative shows that A(t) < 0 to assure
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a minimum in F . This is the case when t < 1. Therefore, it is seen that as t is lowered through

1, A(t) changes sign from positive to negative. Any functional form of A(t) that satisfies this

one condition will be sufficient to reproduce the phase change. Landau assumed a very simple

temperature dependence for A,

A(t) = α(t − 1). (2.61)

With this the magnetization for T < Tc is given by

m = ±
√

α(1 − t)

B(t)
. (2.62)

The ± indicates the isotropic nature of space. “Up” magnetization is equivalent to “down”

in the absence of an applied field. Landau further assumed that B(t) = B is constant with

temperature. Under this assumption, the magnetization grows as t1/2 near t = 1. This also

allows the free energy to be expressed in terms of α and B.

F = F0(t) −
α2(t − 1)2

2B
(2.63)

From this expression for the free energy the magnetic contribution to the entropy and the heat

capacity is easily computed. Landau’s theory predicts a jump in heat capacity at T = Tc.

Since everything regarding the phase transition up to now has been derived in zero applied

field, it is not possible to predict the behavior of the susceptibility as a function of temperature.

This can be overcome by adding a small magnetic Zeeman term (−mh where h = HappMs)

to Eq. 2.58. The smallness of the Zeeman energy is ensured by keeping h very close to zero.

The textbook approach in this case [Pathria (1996)] is to rewrite Eq. 2.58 including h, set the

derivative of F with respect to m equal to zero and then solve for h.

h = 2A(t)m + 2Bm3. (2.64)

From here the inverse susceptibility (1/χ) is defined as ∂h/∂m which gives

χ−1 = 2A(t) + 6Bm2. (2.65)

For t > 1, m = 0 and χ diverges like 1/t as t → 1+ if the form of A(t) found in the zero field

case holds. For t < 1, m =
√

α(1 − t)/B. Substituting this in for χ gives that the susceptibility
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diverges as 1/t as t → 1−. The last bits of information gleaned from this procedure come from

considering what happens to m if h is varied when t = 1. From Eq. 2.64 it is seen that m ∝ h1/3

in the low field limit. This in turn implies that at t = 1, that is at the actual zero field phase

transition temperature, the susceptibility should vary with field like χ ∝ h−2/3.

The most significant conclusion drawn from the Landau theory is that the physically mea-

surable quantities m and χ vary with power law dependencies on t and h in the vicinity of the

phase transition. Based on the temperature dependence of χ it is seen that the Landau theory

of phase transitions is a mean field type of calculation. Therefore, any arguments derived from

it are subject to the limitations of mean field theory.

The Heisenberg interaction, that models long range magnetic order, is isotropic (Eq. 2.17).

However, in many magnetically ordered materials the spontaneous mangetization prefers to lie

along particular crystallographic directions. This phenomenon is termed magnetocrystalline

anisotropy (MCA). The most common manifestation of MCA is in the applied field required to

saturate the measured magnetic moment of a sample. The direction that requires the smallest

field for saturation is termed the “easy” axis. Other directions are called “hard” axes. The

microscopic origins of MCA may be crystalline electric field effects, anisotropic coupling, or

anisotropic moments.

Models of MCA are based around the idea that when the magnetization lies along the

easy axis, the free energy of the system is minimized (if domain effects are neglected). The

moment must be forced away from the easy axis which increases the energy in the sample.

The connection between the energy increase and the displaced angle is made via anisotropy

constants. Determining these constants can be accomplished in several ways. Commonly

one measures the work required to saturate the magnetic moment of a sample along different

directions. Then it is possible to extract the relative values of the constants. Another method

exploits the fact that a moment placed in a perpendicular magnetic field will precess about

the field with a characteristic frequency. If an alternating field with this frequency is applied

perpendicular to the static field, there will be a coherent absorption of energy which manifests

itself (among other ways) as a dramatic increase in the susceptibility of the sample. Such
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transverse measurements have been shown to be useful in determining the anisotropy constants

for thin films [Spinu et al. (2000)]. A third method is to fix H and measure M as a function of

angle, rotating about symmetry axes in the sample. Then, fitting the data to an appropriate

model will give the anisotropy constants.

Experimentally it is observed that the magnitude of anisotropy constants strongly depend

on temperature [Morrish (2001)]. A major shortcoming of the typical techniques employed to

measure the anisotropy constants is that a fairly large static field must be applied. Such a field

can, and does, introduce considerable energy, especially at low temperatures and in samples

with a large moment per ion. A 10 kOe field applied to a single Bohr magneton moment

induces a Zeeman splitting on the order of 1 K. Especially along the hard directions, this field

may not be sufficient to saturate the moments. Indeed, it is not uncommon that a 55 kOe field

is insufficient to perform a saturation measurement at 2 K.

To develop a feel for the MCA, three itinerant ferromagnetic systems are considered, iron,

nickel, and cobalt. Iron and nickel both possess cubic symmetry. The easy direction for iron is

along the cube edge and for nickel it is the body diagonal. Cobalt is hexagonal and manifests

uniaxial anisotropy with the c axis being the easy direction and anywhere in the hexagonal

planes being (nearly) equivalent hard directions [Morrish (2001)]. These cases are studied

because they illustrate the principle, but due to the high degree of symmetry many terms

may be neglected. Deviations from the easy axis will increase the energy. It is convenient to

express the anisotropy energy as a power series of trigonometric functions of the angles the

magnetization direction makes with the crystal axes.

Beginning with the cubic systems, the direction cosines from the cube axes may be denoted

as α1, α2, and α3. The expression for the anisotropy energy must be independent of the sign

of the α’s. Hence, only even powers will appear. Cross terms of the type α1α2 are also not

permitted. The first candidate is the term k1α
2
1 + k2α

2
2 + k3α

2
3. However, this term will not

give any anisotropy energy as the expression must be independent of an interchange of any two

α’s which is a manifestation of the freedom in choosing two of the three directions in a right-

handed coordinate system. Therefore, k1 = k2 = k3. Since α2
1 + α2

2 + α2
3 = 1 there will be no
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contribution to the anisotropy from this term. This means the lowest order term is the fourth

degree term. Again, there is a simplification. Only the term containing α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3

needs to be considered because it is equal to 1
2 − 1

2

(

α4
1 + α4

2 + α4
3

)

. The next term will be of

degree 6. Generally this is sufficient to explain the experimental results. Thus, the anisotropy

energy for a cubic system may be written as

U cubic
aniso = K1

(

α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3

)

+ K2α
2
1α

2
2α

2
3. (2.66)

Three typical cases are considered. First, if the magnetization lies along a cube edge, then two

of the three α’s are zero and the total energy is zero regardless of K1 and K2. Second, if the

magnetization lies along a body diagonal, α1 = α2 = α3 =
√

2
2 . The anisotropy energy in this

case is given by

Uaniso =
3K1

4
+

K2

8
. (2.67)

If K1 is negative and K2 < −3K1

2 then the body diagonal will be the easy axis. Finally, if the

magnetization lies along a face diagonal, then one of the α’s is zero and the anisotropy energy

is K1

4 . If K1 < 0 and K2 > −3K1

2 then the face diagonal will be the easy axis. From the latter

two cases, it may be seen that if K1 > 0 then the cube edges will be easy directions.

For uniaxial symmetry, only one angle is needed. Specifically, if θ is defined as the angle

between the magnetization and the easy axis then the anisotropy energy may be written as

Uuni
aniso = K ′

1 sin2 θ + K ′
2 sin4 θ. (2.68)

Taking the uniaxial case, if a magnetic field is applied at an angle φ (Fig. 2.3) with respect

to the easy axis, the magnetization will be deflected to that direction. Neglecting the fourth

order term (small H) the total energy of the system is expressed as

Utotal = K1 sin2 θ − MH cos (φ − θ) . (2.69)

The equilibrium condition is met when Utotal is minimized, i. e. dU/dθ = 0.

In general, this anisotropy should manifest itself in the measurement of magnetic suscep-

tibility. Measurements of χTDR with the excitation field parallel to the ordering axis give a

much stronger signal when compared to measuremenst perpendicular to the easy direction.

This is discussed in more detail below.
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Figure 2.3 Geometry of uniaxial anisotropy energy expressed in Eq. 2.69.
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2.3 Materials Studied and Results

Experimentally the TDR data on local moment ferromagnets in the vicinity of the phase

transition show a narrow, well defined, peak in χTDR. Application of a static magnetic field

suppresses this peak and shifts it to higher temperatures. In systems with significant magnetic

anisotropy, the orientation of the crystal with respect to the rf probe field affects the behavior

of the observed peak at and above TC (Sec. 2.5). It is useful to compare these data with

data collected from conventional measurements such as low field, static magnetization; low

frequency ac susceptibility; resistivity; and heat capacity. To this end, single crystals of the

ferromagnetic CeVSb3 [Sefat et al. (2008)] with a Curie temperature of 4.6 K were studied

using these more common techniques.

Figure 2.4 presents the heat capacity measured on a Quantum Design Physical Proper-

ties Measurement System (PPMS) and magnetic susceptibility as measured by the 4He TDR

(χTDR) in zero applied magnetic field for a single crystal of CeVSb3 (Sec. 2.3.2). There is

a clear lambda like anomaly in heat capacity at approximately 4.6 K. This coincides with a

dramatic peak in χTDR. The coincident temperatures strongly suggest that the peak in χTDR

is associated with the phase transition. The gradual decrease in measured susceptibility for

temperatures less than 4.3 K or so is associated with a decrease in resistivity. The peak in

χTDR should be contrasted with the response of antiferromagnetic SmAgSb2 (Fig. 1.5). For the

antiferromagnet there is no corresponding increase in χTDR at the Néel temperature. Rather

there is just a decrease in resistivity due to a loss of spin disorder scattering as the samar-

ium moments order. Figure 2.5 compares low frequency ac susceptibility available from a

commercial ac susceptometer (Quantum Design Magnetic Properties Measurement System, or

MPMS) with the same resonator data from Fig. 2.4. Both data sets are normalized to the

maximum in measured χ for the respective technique. For both systems, this maximum corre-

sponds to the same temperature to within 50 mK. The drive frequency from the commercial

system was set at 333 Hz and the peak to peak amplitude of the probe field was 1 Oe. On the

paramagnetic side, the normalized data from both systems follows the same temperature be-

havior. However on the ferromagnetic side the low frequency data drops off much slower than
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magnetic susceptibility (right axis, red squares) for CeVSb3

measured along the magnetic easy axis. Peaks occur in both

data sets at the ordering temperature.
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that from the resonator. This is due to a combination of the frequencies and the amplitudes

of the probe fields. The TDR data are collected using a probe field ≤10 mOe which is at least

100 times smaller than the commercial system’s. It is expected that correlation effects should

dominate the response of the sample since the TDR provides such a weak perturbation. Also

the much higher frequency from the TDR (∼ 105 times larger) cuts off the magnetic response of

slower relaxation processes. This näıvely can be thought of as analogous to a simple harmonic

oscillator. If the oscillator is driven far above its resonant frequency, then the response is very

limited in amplitude. The oscillator is very ‘stiff’ at the high frequencies. Figure 2.6 shows

4 6 8

0.0

0.5

1.0

 QD-MPMS
 TDR

 

 

/
m

ax

T (K)

Figure 2.5 Comparison of low frequency ac susceptibility (solid square) and

TDR data (hollow hexagons) for CeVSb3 with the probe field

aligned with the magnetic easy axis. Both curves are normalized

to 1 at the maximum.

the zero field cooled-field warmed static susceptibility, as defined as magnetic moment divided

by applied field, versus temperature in a 25 Oe field for CeVSb3. The field is applied along the
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magnetic easy axis. As this is a zero field cooled measurement, there are magnetic domains

present. On warming in the applied field, thermal energy assists in domain wall motion allow-

ing the moment parallel to the field to grow. At TC thermal energy dominates the exchange

interaction leading to order and the moment drops. The paramagnetic static susceptibility is

qualitatively similar to both the low frequency ac susceptibility and the TDR data. Again, it

is in the ferromagnetic state that these data differ dramatically.

Also shown in Fig. 2.6 are resistivity with the current parallel (J ||c) and perpendicular to

(J ||b) the magnetic easy axis in zero field. Of particular importance is the lack of a peak in the

resistivity at TC . Comparison with the TDR data shows that below TC the rf susceptibility

is dominated by the resistivity, while above TC there is a mixing of the spin susceptibility

and the resistivity components. In the case where the TDR probe field is aligned with the

crystallographic c axis, the resistivity in the ab-plane is simultaneously probed. The slightly

convex nature of the b axis ρ for T > TC is masked in the TDR data by the increasing spin

susceptibility as T → T+
C .

Several experimental facts are clear from these measurements on CeVSb3. First, the TDR

probes a combination of spin and resistive contributions to susceptibility as demonstrated by

the decrease in χTDR below TC in accordance with resistivity. Second, in the vicinity of a

ferromagnetic phase transition the spin susceptibility dominates the change in measured χTDR

as demonstrated by the sharp peak at TC . Third, the peak in χTDR is associated with the

magnetic ordering as evidenced by the matching ofTC determined from the TDR, heat capacity,

resistivity, and static and ac susceptibility data. Finally, the peak from the TDR data is much

sharper than the low frequency commercial measurement of susceptibility. Applying a dc

magnetic field suppresses χTDR in amplitude and shifts it to higher temperatures, as seen in

Fig. 2.7.

2.3.1 Multiple Magnetic Phases in CeSb

As an example of the utility and sensitivity of the TDR the H−T phase diagram of CeSb was

determined solely from measurements of χTDR using the 3He TDR. CeSb has been well studied
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and is known to manifest a complex magnetic phase diagram. It forms a layered structure

with magnetic ordering occurring in some of the layers while others remain paramagnetic as

determined via heat capacity [Roussat-Mignod et al. (1980)] and neutron diffraction [Lebech

et al. (1980)].

Figure 2.8 shows a temperature scan for the compound CeSb in zero applied field. This

compound is well known to have multiple magnetically ordered phases in field-temperature

space [Wiener and Canfield (2000)]. The TDR reproduces the phase diagram presented therein

(see Fig. 2.9) as well as those reported previously [Bartholin et al. (1975), Meier et al. (1978),

Roussat-Mignod et al. (1980), Escorne et al. (1981)]. Each transition into a new phase results

in a kink in the measured susceptibility. This kink may originate in either the resistive or spin

contributions to susceptibility. Either way, the transition would be observed.

The phase diagram developed by the TDR was generated by measuring χTDR parallel to the

[100] axis of the sample. This means the resistivity in the <100> plane was probed. Further,

only temperature sweeps were performed in constant magnetic field. These facts taken in

tandem can account for the missed lines in the TDR data, however it does not account for the

observed lines not seen in other data. The general nature of this difference was not explored,

rather the measurement was performed as a check on the capabilities of the TDR. The strong

similarities between the published and measured phase diagram clearly demonstrate that this

apparatus can be used to study and resolve complex cascades of transitions.

2.3.2 CeVSb3

CeVSb3 is the only member of the RVSb3 family to manifest ferromagnetic order [Sefat

et al. (2008)]. The Curie temperature for this compound is 4.6 K (Fig. 2.4), and it has a sat-

urated moment of 1.4 µB per cerium. It crystallizes in an orthorhombic structure with lattice

parameters a ≈ 13.17Å, b ≈ 6.24Å, and c ≈ 6.02Å. The magnetic easy axis is the crystallo-

graphic c axis. Room temperature resistivity is on the order of 125 µΩ cm and decreases to

less than 50 µΩ cm at 2 K. Assuming a temperature independent magnetic permability µ = 1

and a measurement frequency of 10 MHz the corresponding skin depth for ρ = 50 µΩ cm is
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Figure 2.9 Phase diagram for single crystal CeSb. Hollow points are from

Wiener and Canfield (2000) while solid points are TDR data.
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approximately 200 µm calculated from Eq. 1.1. Therefore, unless the sample is reasonably

large (≥ 0.4 mm on a side), or the measurement frequency is increased, the measured χTDR

should have at most a weak resistivity component. Data collected on two samples (one in

the 3He TDR and one in the 4He TDR) do indeed show that for small samples this is true.

The smaller, 3He, sample had dimensions of 400×100 µm2 perpendicular to the ac excitation

field whereas the larger, 4He sample had dimensions 1000×1000 µm2 perpendicular to the

ac excitation field. The larger 4He sample used to study anisotropy gives a much larger low

temperature suppression from the resistive component compared to the smaller 3He sample as

shown in Fig. 2.10. The smaller 3He sample does show a slight resistive tail for T < TC , but

it is much reduced compared to the 4He system.
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0.0

0.5

1.0

 

 

 400 m wide, 10 MHz
 1000 m wide, 28 MHz

/
m
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Figure 2.10 Comparison of χTDR for two CeVSb3 crystals of different sizes.

The smaller sample was measured in the 3He system and the

larger sample was measured in the 4He system.
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2.3.3 CeAgSb2

CeAgSb2 is a member of the tetragonal RAgSb2 family. Published values of the lattice

parameters obtained from the gadolinium member show that a ≈ 4.29Å and c ≈ 10.49Å. It is

know to order ferromagnetically along the c axis at 9.8 K with a saturated moment of 0.37 µB

per cerium, which is greatly reduced from the paramagnetic effective moment of 2.26 µB per

cerium [Myers et al. (1999b)]. The large ratio between peff and µsat would put this on the

possible list of itinerant moments when compared with the Rhodes-Wohlfarth plot. However,

in Myers et al. (1999b) it is shown that strong crystalline electric field effects constrain the

moments of the other magnetic RAgSb2 to the basal plane. Anisotropic magnetization data

vs. applied field in the cerium compound suggests that there may be antiferromagnetic ordering

in the plane with a cant of the moment out giving rise to the small observed c-axis saturation

value.

In Fig. 2.11 the 28 MHz susceptibility is shown for CeAgSb2 as measured in the 3He. The

low resistivity in the ordered state is evident from the decrease in χTDR as T drops. Absolute

values of the zero field χTDR were determined via the method outlined in Sec. 1.5 at 28 MHz.

Results presented in Fig. 2.11 show that the sample is still in the skin depth regime for T > TC .

Fig. 2.12 is a detail of how the peak in χTDR suppresses with applied field. The full

amplitude change in χTDR is less than 2× 10−3 in cgs units for zero field. For the lower fields,

the χTDR vs. T curves merge at a temperature just under 9.6 K. However, the 1 kOe curve

shows an observably lower χTDR from 10 K and down. There are two possibilities as to what

is causing the reduction in the observed susceptibility. The first is that the applied field is

suppressing the spin fluctuations associated with the phase transition. While this is clearly

the case, since the peak in χTDR marking TC is caused by these fluctuations, this suppression

is achieved by a field somewhat larger than 200 Oe. The second possibility is that there are

ordered state magnetic fluctuations which are suppressed. This possibility was considered by

Jobiliong et al. (2005). If this is the case, then the observed decrease in χTDR should be evident

in ρ as well, as the effect of the fluctuations was to provide an additional scattering mechanism

to allow for a unique resistivity curve. By applying the static bias field, the fluctations are
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Figure 2.11 Zero field χTDR for CeAgSb2 showing the magnetic transition

at approximately 9.8 K and the decrease in resistivity due to

loss of spin disorder scattering.
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Figure 2.12 χTDR near TC in the labeled applied fields (in Oe) for

CeAgSb2. Note the extreme narrowness of the peak.
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suppressed and so is this scattering mechanism. Therefore, the observed χTDR data in higher

fields should be reduced according to the reduction in ρ, as is seen.

2.3.4 YTiO3

YTiO3 is an insulating perovskite oxide that orders ferromagnetically at approximately

23.5 K. Each titanium ion carries a small moment of 0.85 µB [Garrett et al. (1981)]. The

crystallographic c axis is the magnetic easy axis.

As an insulating magnetically ordered compound, it is expected that the measured suscep-

tibility be positive through the transition. As has been presented previously, this is not the

case for metallic ferromagnets wherein the resistive screening forces the measured χTDR to be

negative even though the system is transitioning to the ordered state. Fig. 2.13 shows the

measured susceptibility in absolute units obtained from the TDR. As expected, the observed

χTDR is positive.

The difference in χTDR above and below TC is curious and not well understood.

2.3.5 GdPtIn

This is an hexagonal metal with a magnetic ordering temperature of 68 K. It carries a

moment of 7.55 µB per Gd and the magnetic easy axis is parallel to the c-axis [Morosan et al.

(2005)].

The measured susceptibility at 14 MHz for GdPtIn is presented in Fig. 2.14. The metal-

lic nature of the material is evident from the background decrease in χTDR as temperature

decreases. The measured TC is approximately 67.5 K which is consistent with the published

value. Full suppression of the peak was not achieved as an applied field of 3 kOe resulted in

the sample being pulled out of the frozen grease. The general behavior is still evident and

consistent with the observed local moment behavior.

A second measurement at 28 MHz was made with the 4He systems allowing for a pullout,

and empty coil resonance to be determined. This permitted a determination of the absolute

value of χTDR. Results of that measurement are presented in Fig.2.15. It is noteworthy that
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Figure 2.13 χTDR in cgs units for YTiO3.
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even at TC the measured susceptibility is negative, and the sample is still skin depth limited.

This suggests the divergence of χTDR at the ordering temperature may be suppressed by the

finite frequency.
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Figure 2.15 28 MHz susceptibility for GdPtIn near TC in fields from 0-400

Oe in 100 Oe steps. Higher fields have lower amplitude max-

ima. Inset: Zero field susceptibility over entire measured tem-

perature range.

2.3.6 Ce3Al11

Ce3Al11 is a very good metal with ferromagnetic order setting in at 6.2 K. Upon further

cooling, there is a transition to an incommensurate magnetic structure at 3.2 K [Boucherle

et al. (1995)]. There are two distinct cerium sites in the lattice. One carries a moment of 1.27

µB while the other is 0.24 µB.

Both transitions are readily evident in the TDR data (Fig. 2.16). The para- to ferromag-
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netic transition is consistent with the other local moment systems studied (Fig. 2.17). The

ferromagnetic to incommensurate transition shows a strong mean field behavior in zero field,

with a sharp step in χTDR (Fig. 2.18).
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Figure 2.16 χTDR vs. temperature for Ce3Al11 in applied fields from 0 to

500 Oe.

To further explore these transitions, heat capacity measurements were taken vs. temper-

ature in six static fields on a larger sample. The static field was aligned with the magnetic

easy axis when the sample was in the ferromagnetic state. Figure 2.19 displays the results of

these measurements. The applied field was varied from 0-1 kOe in steps of 0.2 kOe. At first

the low temperature feature looks very different from what is seen in susceptibility. There is a

step-like change in cP at the transition, but a second transition not seen in the rf susceptibility

data is evident. At first this is somewhat confusing. However, these crystals were grown out

a tin flux. The smaller sample used in the TDR measurements likely had no residual tin on

its surface, thereby limiting the detection of the superconducting transition. Further, if there

are tin inclusions in the sample then due to the excellent screening capabilities of Ce3Al11’s

low resistivity, these inclusions would not be probed. Heat capacity does not suffer from this
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screening effect, and would detect included tin rather easily. If the second low temperature

peak is ascribed to tin, then it is seen that the heat capacity suggests a mean field second order

transition.
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Figure 2.19 Heat capacity for Ce3Al11 in six applied magnetic fields. Num-

bers indicate the extremes of applied magnetic field in kOe as

described in the text. Inset: Detail of the low temperature

transition for 0 and 1 kOe.

2.4 Evolution of χTDR(T ) curves in applied field

Some common features have been seen in all local moment systems. First, there exists a

well defined narrow peak at TC in zero applied field. This peak is suppressed in amplitude and

shifted to higher temperatures as the applied field is increased. This peak is clearly associated

with the phase transition. An argument against a domain response is the observed fact of a

rapid increase in χ for T → T+
C . In this temperature region, there are no domains because

there is no long-range order.
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This peak can be understood qualitatively by simple ferromagnetic exchange arguments.

In zero applied static field, the individual moments respond to the rf excitation field and a

bulk moment is induced. The total moment of the sample is the thermal average of the atomic

moments in the sample. As the temperature is lowered close to the Curie point, the exchange

energy becomes competitive with thermal fluctuation energy, kBT . Therefore, the individual

moments begin to respond in clusters, the linear dimension of which is on the order of the

correlation length. For a given applied field there is a proportionately larger positive magnetic

response of the sample and a larger measured χ. Upon crossing TC the exchange interaction

dominates the response of the sample. The small rf field is unable to induce a change in

the sample moment because such a response requires the rotation of spins away from mutual

parallel alignment. In effect, the atomic moments are ‘frozen’ in place with respect to the tank

coil’s ac field. This explains the rapid decrease in χ for temperatures just below TC .

Application of a static bias field introduces a Zeeman splitting on the moments, giving a

preferred orientation parallel to the applied field. When the static field direction coincides

with the eventual ordering direction, it is easier for exchange interactions to overcome thermal

randomization. So, the crossover that the maximum in χ marks can occur at a higher temper-

ature. A second effect of this Zeeman splitting is to reduce the change in the sample moment

induced by the rf field. This results in a reduced amplitude in χ as temperature is lowered.

If the effect of the static bias field is assumed to simply add an ordering energy term to the

exchange, then it would be expected that the shift in the temperature of the maximum would

be linear in field. Returning to the mean field model, one obtains

M(T,H) = M0
µ(Hexch + Happ)

kBT
. (2.70)

From Eqs. 2.19 and 2.20, however, it is unclear how the applied magnetic field will quantita-

tively effect the magnetic susceptibility. Recourse to the Brillouin expression for magnetization

(Eq. 2.8), allows the leading correction to the susceptibility to be determined. However, an

ad hoc introduction of the ordering temperature is needed. In one sense, such an artificial

introduction of a parameter seems unjustified. Still, it could be argued that Landau developed

his theory with just such an assumption, i. e. it is an experimental fact that there is an ordering
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temperature. Boldly charging ahead, the magnetization for the spin-1/2 case is

M(t, h) = M0 tanh
µBh

kBt
(2.71)

where h = Happ + Hint is the sum of the applied field and the internal field from the moments,

t = T − TC , and M0 = −NgJµBJ/V the susceptibility can be determined by differentiation.

This gives

χ(t, h) =
µM0

kBt

(

1 − tanh2 µBh

kBt

)

. (2.72)

Generally one would expand the hyperbolic tangent for small arguments. The validity of such

an expansion must be justified since near the ordering temperature t ≈ 0. In the zero applied

field case, this can be dealt with by noting that above TC the magnetization is zero (in the

mean field theory). Application of a bias field forces the numerator to be finite. Concurrently

the temperature of the maximum shifts higher so that t is finite as well. Therefore it seems

reasonable that the argument in the hyperbolic tangent will stay small. The expansion of χ

leads to

χ(t, h) ≈ µM0

kB

t3

t4 + (µBht/kB)2 + (µBh/
√

2kB)4
(2.73)

The temperature of the maximum in χ can be determined by taking the derivative with respect

to t. This gives

∂χ

∂t
=

−at6 + a(bh)2t4 + (3a/4)(bh)4t2

(t4 + (bht)2 + (bh)4/4)2
(2.74)

where a = µBM0/kBt and b = µ/kB . The condition for an extremum is met when the

numerator is 0. Two of the six roots are 0, two are imaginary, and two are given by

t = ±
√

3

2

µBh

kB
. (2.75)

The positive root corresponds to the physically relevant situation. The shift in t is expected to

be linear in h, confirming the physical argument given above. What is gained is, for a spin-1/2

system, the slope of a plot of t vs. Happ should be
√

3/2µB/kB . The temperature in Eq. 2.75

can be put back into Eq. 2.73 to get χmax vs. Happ. Doing so gives

χmax =
3

8

√

3

2

M0

h
(2.76)
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and the expectation is that the maximum in susceptibility should be suppressed like (Hex + Happ)
−1.

To generalize this to arbitrary spin, it is easier to return to Eq. 2.8 and expand it for small

arguments.

M(t, h) ≈ M0

[

hy

12J2t

(

(2J + 1)2 − 1
)

+
y3h3

45(2J)4t3

(

1 − (2J + 1)4
)

]

(2.77)

In the above M0, h, and t have the same meaning as in Eq. 2.71 and

y =
gJµBJ

kB
. (2.78)

Differentiating with respect to h results in

χ(t, h) ≈ M0

[

y

12J2t

(

(2J + 1)2 − 1
)

+
y3h2

15(2J)4t3

(

1 − (2J + 1)4
)

]

(2.79)

The susceptibility has a maximum at the temperature

t ≈ +
gJµBh

kB

√

√

√

√

3
(

1 + (2J + 1)2
)

20
(2.80)

Again, the temperature of the maximum in χ is expected to shift linearly with applied field. On

substituting J = 1/2, equation 2.80 reduces to 2.75 apart from a factor of 1/
√

2. Substituting

back into Eq. 2.79 gives

χmax(h) ≈ M0
2J (J + 1)

9h

√

10

3 (2J2 + 2J + 1)
(2.81)

Equation 2.80 predicts that a plot of t = T − TC vs. applied field should be linear with a

slope, s, given by

s =
gJµB

kB

√

√

√

√

3
(

1 + (2J + 1)2
)

20
. (2.82)

For a ferromagnet containing trivalent Ce ions, where S = 1
2 , L = 3, and J = 5

2 , and using

Eq. 2.4 the preceding analysis predicts the slope should be 1.35×10−4 K/Oe regardless of the

ordering temperature. Figure 2.20 shows a plot of t vs Happ for CeVSb3 and a linear fit to

these data. The fit gives a slope of 4.75×10−4 K/Oe which is about 3.6 times larger than

the prediction. Similar data is presented in Fig. 2.21 for Ce3Al11. The resulting linear fit

gives a slope of 3.13×10−4 K/Oe. This slope is about 2.3 times larger than the prediction.
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Figure 2.20 Temperature of the peak in χTDR vs. applied field for CeVSb3
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Figure 2.21 Temperature of the peak in χTDR vs. applied field for Ce3Al11
as measured along the c–axis.
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Turning to GdPtIn, Eq. 2.82 predicts a slope of 4.19×10−3 K/Oe for trivalent Gd (S = 7
2 ,

L = 0, J = 7
2). From Fig. 2.22 a fit to the temperature of the maximum vs. applied field gives

1.15×10−3 K/Oe. The measured slope is almost 3.7 times smaller than what is predicted from

this simple analysis.
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Figure 2.22 Temperature of the peak in χTDR vs. applied field for GdPtIn

as measured along the c–axis.

Given the simplifications that have gone into this analysis, the match between the data

and the predictions is quite good. It is seen in Ch. 3 that the amplitude of the maximum in

χTDR does follow a 1/(H + H∗) type of behavior. The consequences of this observation for

critical scaling are discussed in more detail there.

Quantitative analysis of the phase transition generally lies in the realm of scaling theory, and

it will be addressed later. However, Sznajd (2001) presents an argument that the temperature

evolution of the peak in χ with applied field is not associated with critical fluctuations at all.

It is also stated that within the Landau mean-field theory of second order phase transitions

this temperature should depend on applied field as a power law. Under this argument, the

predicted thermal evolution for the peak in χ is it grows as h2 while for cubic (essentially
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isotropic exchange) it should grow like h2/3.

2.5 Anisotropy in CeVSb3

Asymmetry or anisotropy is common in Nature [McManus (1976)]. In this section, the

anisotropic rf susceptibility in CeVSb3 is studied. When χTDR is measured perpendicular to

the magnetic easy axis, obvious differences in the data are seen (Fig. 2.23). First, the amplitude

of the peak at TC is approximately 40 times smaller. Also the field required to suppress the

peak to 10% of the zero field value is nearly 11 times larger for the perpendicular orientation

(Fig. 2.25). Finally, the temperature of the maximum is only weakly dependent on the applied

field (inset of Fig. 2.24).
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Figure 2.23 Comparison of zero field susceptibility for CeVSb3 measured

parallel and perpendicular to the magnetic easy axis.

The low temperature difference between the directions can be explained in two ways. First,

the resistivity of this material along the c-axis is greater than along the b [Sefat et al. (2008)].

Since the rf field probes the resistivity perpendicular to it, when measuring χTDR along the

c–axis ρb is probed and vice versa. An alternative possibility is that when χTDR is measured
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perpendicular to the easy axis the rf field can tip the ordered moments coherently. While

measuring χTDR parallel to the easy axis, the rf field is insufficient to flip the moments resulting

in no change in magnetic moment. The deviation at higher temperatures is a direct result of

the differing spin susceptibility, as the published resistivity along b is less than that along

c. The screening in the ab plane (with the rf parallel to c axis) should be greater than the

screening the in ac plane (rf parallel to b axis) and measured χTDR should be less. This is not

observed.
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Figure 2.24 χTDR measured perpendicular to the magnetic easy axis in

different static bias fields. The amplitude of the maximum is

much less than that measured along the easy axis. The fields

required for suppression are also considerably larger. Inset:

Peak amplitude (left axis) and temperature of peak (right axis)

versus applied field.

Fig. 2.24 shows χTDR vs. T for CeVSb3 measured along the b axis in different applied

static fields. Two features stand out when compared with the c axis data. First, the fields

required to suppress the peak are much larger than the c axis case (6.5 kOe as compared to

0.5 kOe for a 90% suppression). Second, the temperature of the peak is basically unaffected
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by the application of the magnetic field, increasing less than 40 mK with an applied field of 5

kOe. This is in stark contrast to the c axis data where the maximum shifts up by almost 2 K

with an applied field of 3 kOe. Both of these behaviors are summarized in Fig. 2.25.
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Figure 2.25 χmax
TDR normalized to the zero field value versus applied field

for parallel and perpendicular to the easy axis for CeVSb3.

Dotted line marks a 90% suppression.

2.6 Summary

The general features of radio–frequency magnetic susceptibility in local moment ferromag-

nets have been explored. The expected divergence in χTDR at TC manifests as a sharp peak

in zero applied field. Application of a static field suppresses the peak and shifts it to higher

temperatures when the rf–field and static field are parallel with the magnetic easy axis in the

crystal. In the case where both fields are perpendicular to the magnetic easy axis, a peak is

still observed. However, the zero field amplitude of this peak is greatly suppressed relative to

measurements along the easy axis. Applying a static field for a hard axis orientation does not

appreciably shift the temperature of the peak. The fields required to suppress the hard axis
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peak are much greater than those required to suppress the easy axis peak.
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CHAPTER 3. Failure of Critical Scaling Analysis of the Phase Transition

3.1 Introduction

The quality of the data collected by the TDR suggests that it may provide information

regarding the physics governing the phase transition. This physics falls under the subject

of critical scaling analysis. An overview of the theory of critical scaling is provided first.

Following, is application of this analysis to the systems CeVSb3, CeAgSb2, and YTiO3. The

failure of the TDR data to properly scale suggests that these data may lie on the boundary

between the static and dynamic regimes.

Experimentally it is known that the behavior of the magnetization, heat capacity, and mag-

netic susceptibility near TC are dominated by power law dependencies in field and temperature.

The various exponents assigned to each are

CP ∼ τ−α (3.1)

m ∼ τβ (3.2)

m ∼ h1/δ (3.3)

χ ∼ τ−γ (3.4)

where τ = |T − TC | /TC is the reduced temperature, and h = µH/kBTC is the reduced field.

The behavior of a system near a phase transition falls into the category of critical point

analysis. The value of the particular thermodynamic variable driving the transition that sits

on the boundary between the ordered and disordered phases is the critical point. Often this

variable is temperature, but it may be field or pressure as well. The fundamental idea behind

critical point analysis is that at the critical point the system has no intrinsic length scale over

which correlations are established.
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From a ferromagnetic standpoint, when the temperature is much higher than the Curie

temperature the system is completely disordered and thermal fluctuations disrupt even nearest

neighbor correlations. As the temperature decreases the ferromagnetic exchange interaction

tends to align neighboring spins with one another. However, for any given spin there is a

characteristic length, ξ, beyond which two spins are uncorrelated. This means that if a spin at

point r points in some direction, then spins less than ξ away from r will tend to point in that

same direction. Conversely, spins farther than ξ will not have any tendency to point in the same

direction as the spin at ar. The closer T is to TC , the greater ξ is, until at T = TC ξ diverges.

The divergence of ξ implies that there is no characteristic length in the problem. Therefore

the free energy and its derivatives (magnetization, heat capacity, magnetic susceptibility, etc.)

may be rescaled in some way provided the thermodynamic variables (field and temperature)

are suitably scaled as well. Authoritative reviews of the subject are provided by Kadanoff

et al. (1967) and Fisher (1967). Stanley (1999) offers a colloquial introduction to the concepts

associated with these critical phenomena. Three basic ideas fall out of critical scaling theory.

The first is the existence of relationships between the various exponents describing the behavior

of the system as it approaches the phase transition. These are called scaling laws. The second

idea is that of data collapse. Data collapse predicts that data collected on, say, magnetization

vs. temperature in various fields, should all fall onto a single pair of curves that approach one

another as T → TC if the data are plotted appropriately. The proper way to plot susceptibility

data will be extracted below.

A third, separate concept of scaling is that of universality [Stanley (1999)]. This is the

observed fact that magnetically ordered materials usually fall into different classes based on

the nature and dimensionality of the ordering. Each class has its own set of critical exponents

(Table 3.1). For ferromagnets it is interesting to note that while there are widely varying values

for β and δ, the product of the two (which is the relevant quantity for scaling susceptibility

data) is always close to 1.5.

The free energy can be expressed as some unknown function of reduced temperature (τ =

|T − TC |/TC) and field (h = µH/kBTC) where TC is the suitably defined zero field transition
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Table 3.1 Critical exponents in various models from Fisher (1967).

Exponent 2-D Ising 3-D Ising 3-D Heisenberg mean field

β 0.12 0.31 0.31 0.5

δ 15 5.0 5.2 3

βδ 1.8 1.55 1.61 1.5

γ 1.75 1.25 1.33 1

temperature.

F = F (τ, h) (3.5)

TC is taken as the temperature of the maximum in χTDR as measured in zero field. Under

the scaling hypothesis if F is multiplied by an arbitrary factor then the function is unchanged

provided the arguments are multiplied by the same factor to some power.

λDF (τ, h) = F (λaτ, λbh). (3.6)

The power D on the prefactor refers to the dimensionality and reflects the fact that the free

energy scales with the volume of the sample. Since the factor λ is arbitrary, it may be chosen

for computational convenience. Taking λaτ = 1 implies λ = τ−1/a. This allows a substitution

into the free energy, recasting it as

F (τ, h) = τD/aF (1, τ−b/ah). (3.7)

From here, the temperature dependence of the zero field heat capacity can be determined.

CP =
∂2F

∂τ2
∼ τD/a−2. (3.8)

Examining the relationship from Eq. 3.1 shows that α = 2−D/a. This is the first scaling law,

and it relates the divergence of the heat capacity directly to the dimensionality of the system.

The exponent a is, as yet, undetermined. However, further work can be done to determine

how the magnetization and susceptibility depend on temperature and field. This will allow for

an elimination of a and b in favor of α, β, δ, and γ.

Eq. 3.7 can be differentiated once with respect to field to determine the temperature de-

pendence of magnetization. Doing so gives

m ∼ τ (D−b)/a (3.9)
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in the limit of zero field. Combining this result with Eq. 3.2 and the relationship between α,

D, and a just found gives β = 2 − α − b/a. Returning to Eq. 3.6 the choice λbh = 1 can be

made. In this case the free energy is recast as

F (τ, h) = hD/bF (h−a/bτ, 1). (3.10)

Now, at the critical point (τ = 0) the magnetization depends on field as

m ∼ hD/b−1. (3.11)

Again, comparison with the assigned labels for the critical indices shows that δ = b/(D − b).

The free energy in Eq. 3.7 can be twice differentiated with respect to field to obtain the

temperature dependence of the susceptibility. This gives

χ ∼ τ (D−2b)/a (3.12)

which shows that γ = (2b − D)/a. Using the relationships between D, b, a, β, and δ it is

possible to rewrite Eq. 3.7 eliminating the exponents b and a. Since β = (D − b)/a and

δ = b/(D − b) the product βδ is just b/a. This is the exponent on the reduced temperature in

Eq. 3.7 (with a minus sign). Therefore, this form of the free energy may be rewritten as

F (τ, h) = τD/aF (1, h/τβδ). (3.13)

Taking derivatives will alter the functional form of F , but it will not change the argument of

that function. All changes are taken into account by moving them to the prefactor. What this

implies is that the relation 3.12 may be rewritten as

χ(τ, h) = τ−γG

(

h

τβδ

)

. (3.14)

Moving the factor τ−γ to the left hand side shows that χτγ is a universal function of h/τβδ .

If temperature dependent susceptibility data is collected in different fields, then a plots of χτγ

vs. h/τβδ should fall onto a single curve as the critical point is approached. This is termed

‘collapse of the data.’
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3.2 Experimentally Determining Scaling Exponents

Ho et al. (1981) have presented a method of determining the scaling exponents β and δ

from measurements of the AC susceptibility in ferromagnets. The basis of their procedure is

the simple fact that the derivative of a function is zero at a maximum of that function. They

further exploit the idea that the derivative of a generalized homogeneous function is itself a

generalized homogeneous function. γ can be determined from a log-log plot of the zero field

susceptibility versus T − TC on the paramagnetic side.

For a fixed field, the susceptibility goes through a maximum at some temperature, τm near

τ = 0. At this temperature the derivative of the susceptibility with respect to temperature is

zero, dχ/dτ = 0. This implies that G in Eq. 3.14 is independent of τ at the maximum which

is satisfied if its argument is constant, i. e. h/τβδ = const. This leads to the conclusions that

τm ∼ h1/(βδ) (3.15)

and

χm(h, τm) ∼ h(1/δ)−1. (3.16)

The Widom relation can be exploited to rewrite the exponent on τm as 1/βδ = 1/(γ + β).

Therefore, it should be possible to determine γ, δ, and the product βδ if χm and τm are

plotted vs. H on log-log axes. These should be straight lines whose slopes are the exponents.

3.3 Critical Scaling in CeAgSb2 and CeVSb3

The scaling analysis developed in earlier sections is not applicable to all of the systems

studied. Ce3Al11 has two distinct cerium moments, and the assumptions going into the analysis

of critical phenomena is that each magnetic site carries the same moment. Therefore, scaling in

Ce3Al11 is not expected to work. Further, some samples (Gd, YIG, , Fe1/4TaS2, and Pr2Fe14B)

had obstacles to experimentally testing the critical phenomena. In the main, these problems

were in the Curie temperatures of the samples. These temperatures were particularly difficult

to reach without the addition of a considerable background signal and thermal lag. What this

leaves for analysis are CeVSb3, CeAgSb2, YTiO3 and GdPtIn. In this section, CeAgSb2 and
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CeVSb3 are studied. The next section addresses YTiO3. As there was never a field sufficient

to suppress the maximum in χTDR fully for GdPtIn, this data is not scaled. However, certain

analyses regarding the peak is attempted.

To account for the resistive background coming from the metallic samples, a high field

temperature sweep is subtracted from the lower field runs. The chosen field is sufficiently

large to completely suppress the peak at TC . As an example of the results of this process the

difference between the lower field data in CeAgSb2 and a 1 kOe run is presented in the main

plot of Fig. 3.1. The inset shows the raw χTDR vs. T for this same data.
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Figure 3.1 Difference in χTDR vs. T relative to a 1 kOe run for CeAgSb2.

Inset: Absolute χTDR vs. T for data in the main panel.

In the course of examining the data from the various local moment systems, it was noticed

that the peak amplitude associated with the phase change was suppressed as H−1. However, a

plot of χmax vs. H−1 deviates from linear for the lowest fields (see Fig. 3.2). This suggests that

the true functional form is not χmax ∝ H−1, but rather that it is proportional to (H + H∗)−1.
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Indeed, a plot of χ−1
max vs. H is linear. H∗ is the effective applied field in which the magnetic

susceptibility diverges for the sample. The general behavior of the susceptibility maximum

with applied field has been observed before in many ferromagnetic systems. Further, Kunkel

et al. (1988) have predicted similar behavior for paramagnetic systems with no interaction for

T → 0. In that work it is stated that such behavior from paramagnets provides evidence that

the maximum is related to the static rather than the dynamic response of the system. This

suggests that the systems are still in the static regime. However, if a comparison is made of

similar measurements at different frequencies (14 and 28 MHz) it is seen that there are some

differences in some of the samples [Vannette et al. (2008c)].
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Figure 3.2 Peak amplitude (solid symbols, left axis) and inverse peak am-

plitude (hollow symbols, right axis) vs. applied field for YTiO3.

Figure 3.3 shows plots of the inverse peak amplitude against applied magnetic field. Both

compounds show a linear relationship with a negative H intercept, which is labeled H∗. This

characteristic field represents the field at which the magnetic susceptibility would truly diverge.
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Figure 3.3 (Color online) Inverse peak amplitude vs. applied magnetic field

for CeAgSb2 (a) and CeVSb3 (b). Solid circles are data and the

line is a linear fit. The H axis intercept (H∗) corresponds to

the applied field at which the susceptibility would diverge.
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The linear relationship is also troubling for scaling analysis because it implies

χm ∼ h−1. (3.17)

In conjunction with Eq. 3.16 this suggests 1/δ is zero and the value of δ is undefined. The

absolute values of H∗ for the two compounds are reasonably close. Comparison of H∗ with

the fields required to suppress the susceptibility maximum, however, indicates a significant

difference. For CeAgSb2 H∗ is not quite a full order of magnitude below the suppression field.

On the other hand, for CeVSb3 H∗ is nearly a factor of 100 smaller than the suppression fields.
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Figure 3.4 (Color online) Scaled plots for CeAgSb2 in the paramagnetic

state neglecting H∗ (a) and adding H∗ to all applied fields (b).

As T → TC , the plot extends off to right. Both plots use the

same exponents.

Scaling was attempted for CeAgSb2. γ was estimated from a double log plot of the zero

field susceptibility while the product βδ was treated as an adjustable parameter. Using values

of the applied field without modification failed to produce any reasonable collapse of the data

(Fig. 3.4(a)). However, if H∗ determined from the plot of inverse peak amplitude versus applied
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field is added to all applied fields the resultant collapse is much better (Fig. 3.4(b)). In order to

determine the relative quality of the data collapse, χ2 analysis was performed on data collected

in the largest and smallest applied fields.

In comparing the two data sets it was seen that there was not a point by point match of the

x values in the data. To combat the the data from the smallest field was parsed into seven point

subsets, a midpoint and three points above and below the midpoint. Every point considered in

the χ2 analysis was treated as a separate midpoint. A fourth order polynomial was fit to each

subset and the resulting fit parameters were used to interpolate the data so that a comparison

between the largest and smallest field data could be made. Tests of this procedure on two

identical cosine functions extending over 3 full periods, where χ2 is expected to be 0, resulted

in χ2 ≈ 2.5. By reducing the test data sets to half period lengths the procedure reduced the

χ2 to 1.2. This lower value of χ2 on a monotonic curve was taken as the ideal. Typical χ2

values for the comparison of scaled data ranged from > 105 to < 2.

Figure 3.5 displays scaled plots for the CeVSb3 data. As with CeAgSb2, γ was estimated

from a double log plot of the zero field susceptibility and βδ was treated as an adjustable

parameter. In panel (a) H∗ is neglected while in panel (b) H∗ is added to all field values.

Interestingly, for this sample the collapse of the data is somewhat better without considering

H∗, however in both situations the collapse is very good.

The precise interpretation of H∗ is difficult. At first, one might think of it as the de-

magnetizing field. This view has the problem that the demagnetizing field is proportional to

the magnetization of the sample. Therefore, it should be recalculated for each applied field

instead of being a single value. On the other hand, if this field is associated with the internal

dipole field from the surrounding magnetic moments a separate complication is met. Using

published values for structure and lattice parameters for CeVSb3 [Sefat et al. (2008)] one can

calculate the dipole field on one Ce ion from its neighbors. This is of the order of -800 Oe if

one assumes a fully ordered lattice of 1.4 µB ions. It can be argued that near TC , where the

data is collected, the lattice is not fully ordered, so such a calculation is invalid. Indeed, at

TC the magnetization is formally zero and therefore the dipolar field should be zero. There
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exists the possibility that this field is somehow related to the imagined Weiss molecular field

that leads to ordering in magnetic samples. Again, there is a problem in that the Weiss field

is little more than an imaginary mechanism as its magnitude should be several orders larger

than what is presented here. However, H∗ represents the field that must be applied to result

in true divergence in χ. Therefore, it can be considered as opposing some other field in the

sample. Taking this stance suggests that H∗ could be related to the exchange field leading

to the magnetic order. Yet another interpretation is to consider H∗ as an effective field orig-

inating with the finite frequency of the measurement. In this case, it would be expected that

for fields less than |H∗| the response would be frequency dominated and the linearity of the

inverse peak amplitude would be more strictly adhered to. For larger fields it, the suppression

should then evolve sublinearly in accordance with the exponent βδ.

Two different frequencies were used to determine if this last idea is the case in CeAgSb2 and

CeVSb3. The previously reported data was taken at 14 MHz. Fig. 3.6 shows the inverse of the

peak in χTDR vs. applied field for CeVSb3 as measured at 28 MHz. It is seen that H∗ increases

very slightly, but is the same as the 14 MHz data within the uncertainty. This notwithstanding,

the observed linearity in the data points is striking, suggesting that the rf field is still in the

static limit, if frequency effects are to be invoked. The 28 MHz data was collected on a cube

shaped sample approximately 1 mm on edge. The demagnetization factor would be smaller

for this sample than for the thinner piece used in the lower frequency measurement.

Similar data collected at 28 MHz on a larger sample CeAgSb2 with nearly the same aspect

ratio as the smaller sample suggests that this material is not in the static regime, as the

measured H∗ is approximately 50% larger when compared to the 14 MHz data (Fig. 3.7). This

interpretation is in keeping with the previous observation that scaling in CeAgSb2 could only

be accomplished by considering the effect of this characteristic field. However, the puzzling fact

that the inverse peak amplitude is linear in H up to 3 times H∗ tends to suggest that this may

not be the case. A possible explanation is that there are multiple terms (Weiss ordering field,

frequency, and geometric) all combined to give the effective H∗. It would be expected that

the Weiss term is constant across samples as this is an intrinsic quality. Given the similarities



85

1.4x10
-3

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1
/c

m
ax

 (
ar

b
)

10008006004002000

Happ (Oe)

Fit Parameters
1/c = a + bH

a =2.2184e-05 ± 1.97e-05
b =1.4643e-06 ± 3.71e-08
-29 < H*  <-1.6 Oe

CeVSb3 28 MHz

 1/c

 linear fit

Figure 3.6 Inverse peak amplitude vs. field for CeVSb3 measured in the
4He system at 28 MHz.

of the shapes and aspect ratios of the samples, it is expected that the demagnetization effects

would be the same. This leaves the main culprit as the frequency for inducing a change in H∗.

Similar analysis performed on a single sample of GdPtIn at both 14 and 28 MHz also shows

that there is a different characteristic field for each frequency here as well. If |H∗|µsat/µB is

plotted against TC for several local moment samples, there appears to be a strong correlation

(Fig. 3.8) that depends on measurement frequency. This lends some credibility to the idea

that H∗ is tied to the exchange field, as there is a correlation between the magnetic energy

associated with this characteristic field and the onset of long-range magnetic order. The higher

frequency trend is very nearly linear while the lower frequency has some positive curvature for

the samples studied. The YTiO3 data at 14 MHz is considerably suppressed relative to the

line joining CeAgSb2 and GdPtIn at the same frequency.
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Table 3.2 Characteristic fields from the analysis of peak amplitude with

applied field.

Sample µsat TC 14 MHz H∗ 28MHz H∗

µB/ion K Oe Oe

CeVSb3 1.4/Ce 4.5 -13 -16

CeAgSb2 0.37/Ce 9.8 -45 -65

YTiO3 0.85/Ti 23.7 -189 -676

GdPtIn 7.55/Gd 68 -187 -321

3.4 Scaling an Insulating Ferromagnet

Since it appears that scaling works best when the H∗ field is taken into consideration,

presented scaled data on YTiO3 immediately considers the effects of this field. Figs. 3.9–3.12

present the results of scaling in YTiO3 using exponents from the models presented in Table 3.1.

In all figures the lines marked ‘5%’ and ‘10%’ denote that fractional change in temperature

from TC . Since critical scaling is only valid close to TC it is natural to expect the collapse of

the data to be better as T → TC . Indeed this is the case for all models. (TC is at +∞ on the

horizontal axis.)

The ‘best’ exponents for the scaling are taken to be those that result in a tighter collapse

of the data farther from TC as determined via the previously discussed χ2 analysis. From

the figures it appears that YTiO3 falls into the 2-D Ising class of magnets. Caution must

be exercised at this point, though, as the larger value of βδ in this model will stretch the

horizontal axis considerably. This said, and considering the nature of the order giving rise to

the ferromagnetic component (canted antiferromagnetism), there is little difference between

the 3-D Ising and 3-D Heisenberg models.

An important aspect to note is that regardless of the values of the critical exponents, the

gross features of the scaled data in YTiO3 are expected for properly analyzed data. This

material is an insulator which means the TDR measurement is only affected by the spin

susceptibility. There is no resistive component to the data. Therefore, any modifications

to the analysis, particularly as pertains to the handling of the skin depth component in the

following section, will be judged by comparing the scaled data with the YTiO3 results.
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3.5 Effect of Skin Depth Limit

Based on the analysis in Ch. 1, in the vicinity of a ferromagnetic phase transition, it is

expected that the measured susceptibility be related to the magnetic permeability via Eq. 1.18

1 + 4πχ =
√

µ. (3.18)

This neglects the contribution of the resistivity to the measured susceptibility. If this part

is considered, from the previous analysis it is expected that Eq. 3.18 be modified so that

1 + 4πχ =
√

µρ. If this is correct, then in skin depth limited samples true scaling should be

attempted for µ instead of the measured χTDR. In some sense this is more reasonable as the

critical scaling is supposed to be performed on materials using the internal field rather than the

applied field. The definition of µ is dB/dH where B is the magnetic induction. In the sample,

this amounts to the actual field present due to all effects. However, previously demagnetization

was not considered. Ignoring demagnetization is justified based on the observed fact that the

susceptibility does not show a saturation effect at T → TC . If such geometric/finite size effects

were considerable, then the zero field χTDR would show a plateau near the Curie temperature.

In fact, the peak in χTDR is extremely narrow and very sharp for all local moment systems

studied. This tends to suggest the effects of demagnetization are not so important here.

Any dramatic deviations from the nature of Figs. 3.9-3.12 in the scaled data will be taken

as indication that the consideration of the skin effect near TC is not necessarily correct as

previously derived. It is shown later that field saturation of the spin response leads to a

reproduction of the behavior of the resistivity (Fig. 4.6 below). What remains in doubt is how

the mixing of µ and ρ actually affect the data when χ formally diverges.

CeAgSb2 is taken as the system under consideration here. The resistivity is low, so the

sample is skin depth limited both above and below TC . Further, the application of fields on

the order of 1 kOe is sufficient to suppress the peak in χTDR at the transition. The previous

scaling (Fig. 3.4) was accomplished by a simple subtraction of a 1 kOe run from the low field

data sets. In what follows, a different method is used to attempt to account for the resistivity

background.
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Figure 3.13 presents the quantity (1 + 4πχ)2 vs. T for CeAgSb2 as measured at 28 MHz

in several applied fields. If the analysis of the skin depth limited regime is correct, then

these curves represent the quantity µρ. The inset to Fig. 3.13 is a detail of the ferromagnetic

ordering. Qualitatively these curves are very similar to the as measured χTDR vs. T curves

shown in Figs. 2.11 and 2.12. The main difference here is that the measured quantities are all

positive.
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Figure 3.13 µρ vs. T for CeAgSb2 as determined by (1 + 4πχ)2. Inset:

Detail near TC .

Under the assumptions that (1) Fig. 3.13 accurately represents the combination of magnetic

spin and electrically resistive components, and (2) the application of a 1 kOe field does not

dramatically alter the resistivity but suppresses the magnetic contribution, dividing the lower

field data sets by the 1 kOe run should result in µ vs. T curves. Such curves are plotted in

Fig. 3.14. It is evident that this is assumed to be the relative permeability.
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in the text. Inset: Detail near TC .
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The analysis developed by Ho et al. (1981) is applied to the determined µ. Fig. 3.15 is

a plot of log(µpeak) vs. log(H) from 40-200 Oe. The data (with the exception of the 200 Oe

point) all fall very close to a single line with slope -0.0248. This translates to a δ of 1.025.

In some sense this is an improvement over the previous analysis where δ → ∞. The issue,

though, is that the previous behavior of δ was observed in YTiO3 as well. Further, the value

of 1.025 is much too small for any model, mean field giving the smallest at δ = 3. Failure to

provide an appropriate value of δ does not preclude the possibility of scaling, though. As such,

scaling was attempted for the µ data in CeAgSb2. The results of the 3-D Heisenberg scaling

are presented in Fig. 3.16 for three different fields. As there is no characteristic field derivable

from this data, no field correction like what was done in Sec. 3.3 can be attempted.
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Figure 3.15 Log(µpeak) vs. log(H) from the data presented in Fig. 3.14.

It is evident that the compensation of ρ results in better collapse of the data. However,

the fact that both above and below TC data follow precisely the same curve for a given field is
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troubling. In YTiO3 the data above TC curved down as temperature increased while the data

below TC curved up as temperature decreased. While the collapse of the data is quite nice

with this method, it is unclear that the actual handling of the resistive component is better

considering that the behavior of the scaled data far from TC is dramatically different from the

insulating compound.

It can be argued that since what was scaled was the relative permeability, while the scal-

ing hypothesis deals with the susceptibility, the failure of the data to scale is due to a subtle

mishandling of the analysis. It is apparent that the as derived µ (with ρ compensated for by

division) is in SI units with the assumption that the 1 kOe run has the same ac spin suscep-

tibility as vacuum. In principle this should be equivalent to the assumption that subtracting

the high field data set from the lower fields adequately compensates for the resistivity while

not affecting the spin susceptibility. If this is indeed the case, then it should be possible to

convert the extracted permeability to susceptibility. The relation between µ and χ in SI units

is χ = µ− 1. Taking this tack and converting µ to χ does change the results of critical scaling

analysis (Fig. 3.17. However, that change amounts to reflecting the scaled µ data about the

x-axis. Again the difference between these results and the insulating YTiO3 is obvious and

taken as evidence that this is not the correct way to handle the resistive contribution to the

measured χTDR.
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3.6 Summary

The radio–frequency data collected via the TDR does not adhere to critical scaling analysis.

Various attempts to account for the resistive component in metallic ferromagnets fail to produce

scaled data that approximates the insulating YTiO3 with the exception of a simple subtraction

of measured χTDR vs. T data in fields large enough to suppress the peak associated with the

phase transition. This suggests that the simple subtraction method is the most suitable way

of dealing with the resistive component of the measured χTDR. Analysis of the peak in χTDR

near TC extracts a characteristic field H∗, the value of which depends on the measurement

frequency. The frequency dependence of H∗ implies that it may in fact be frequency taking on

the roll of an applied field in suppressing the peak in χTDR at the phase transition. If this were

the case then for fields larger than H∗ a plot of 1/χmax vs. Happ should take on a curvature

appropriate to the value of the critical exponent δ. That this is not observed suggests that

if the finite frequency is acting as a field, then this frequency band may lie on the boundary

between the static and dynamic regimes.
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CHAPTER 4. Itinerant Ferromagnets

4.1 Introduction

In contrast to local moment ferromagnets, itinerant ferromagnets have a delocalized mo-

ment originating from their conduction band electrons. The fractional Bohr magneton moment

of Ni and the discovery of ferromagnetism in ZrZn2 [Matthias and Bozorth (1958)], of which

neither constituent element displays magnetism, pushed the development of the theory of band

ferromagnets.

Figure 4.1 compares temperature dependent static susceptibility for the local moment

CeAgSb2 with that for the itinerant ZrZn2 as measured in a Quantum Design MPMS-5. Two

different techniques were used to determine these susceptibilities. Panel (a) shows the usual

χstatic where the magnetic moment is measured in a small applied field (H = 20 Oe) and M/H

is calculated. This method is appropriate for temperatures well above TC where magnetization

is linearly dependent on field over a fairly large field range, it should be expected to fail in

the ferromagnetic state because M is not necessarily linear in H all the way down to H = 0.

Bearing this in mind, a delta measurement of χstatic was performed (results in panel (b)) as

follows. Magnetic moment versus temperature was measured first in a 17 Oe field and then in

a 22 Oe field. The difference in the resulting moment was divided by the 5 Oe difference in

applied fields to determine ∆M/∆H. The advantage of this method is that it only requires

approximate linearity in M(H) over the 5 Oe window defined by the upper and lower fields.

Thus, it can be expected to approximate χ = dM
dH more closely. Obviously, a smaller H window

is more likely to conform to the linear M(H) approximation.

Whereas the delta measurement results in a lower susceptibility in both samples, both

static techniques produce very similar χ(T ) curves. This is to be contrasted with the results
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of zero field radio frequency susceptibility versus temperature as shown in Fig. 4.2. Whereas

the local moment system shows a sharp, well defined peak in χTDR at the Curie temperature,

the itinerant system exhibits a broad maximum well below TC .

The similarity in the static data in both systems is to be contrasted by the difference in the

χTDR data in both systems. The sharp peak observed in χTDR in the local moment system

is dramatically different from the static result, and more typical of ac susceptibility, albeit

much sharper than what is seen in low frequency measurements. Contrary to this, χTDR in

the itinerant system is qualitatively similar to that seen in the static case. The slow decay

of χTDR below TC in ZrZn2 may even be explained as coming from a decrease in resistivity

due to the decrease in T . This points to the possibility that the local moment system is in

a dynamic measurement regime, and the itinerant is in a static measurement regime at these

frequencies. Another argument for this may be made by considering the relaxation processes

that might occur in these systems.

As local moment systems have their magnetic moments closely associated with particular

ions in the lattice, it seems reasonable to assume these moments would have access to lattice

vibrations, or phonons, as a method of dissipating energy. Conversely, in itinerant magnets

the conduction band electrons are free to wander about the lattice, and therefore might be

expected to interact less strongly with phonons. This may be important in this work because

the spin–lattice interaction time scale is on the order of 10−3 s while the spin–spin interaction

is on the order of 10−7 s. If spin–lattice interactions do dominate the local moment response,

then these ferromagnets would be in a dynamic regime inasmuch as the system does not have

adequate time to come to equilibrium with the probe field before that field changes. In a

similar vein, if spin–spin interactions dominate the itinerant response then these ferromagnets

would be in a static regime as the system has adequate time to come to equilibrium with the

probe field before that field changes. This motivates a closer look at the theoretically predicted

static response of itinerant magnets.
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4.2 Stoner Theory

The Stoner theory [Stoner (1938)] marked a major advancement in the understanding of

itinerant electron magnetism. It offered, for the first time, a reasonable explanation for the

fractional moment exhibited by certain ferromagnets, in particular nickel. Still, at the time

there were recognized short-comings. Most glaring was the over-estimation of TC and the lack of

a Curie-Weiss type susceptibility seen in practically all ferromagnetic materials. The source of

these problems lies in the total reliance on the Fermi function for the temperature dependence

of the thermodynamic quantities. Still, despite its obvious flaws, the Stoner theory has become

the basis for all major theoretical advancements in itinerant magnetism. This theory is a mean

field approach to magnetic order. The main difference between the itinerant Stoner theory

and the local moment Weiss theory begins with the Weiss assumption that the electrons are

localized and occupy atomic mJ dependent energy levels. The Stoner theory considers the

electrons to be delocalized, moving about in the periodic potential of the crystal lattice as

part of the conduction band. The crystal fields quench the orbital moment of the conduction

electrons and the good quantum numbers include the k and the spin.

Stoner theory is based on three postulates: 1) the magnetic carriers are unsaturated spins

in the d-band, 2) effects of the exchange are treated in a mean field way, and 3) Fermi statistics

must be followed. A simple explanation of the Stoner theory can be offered by considering a

parabolic conduction band. The band can be split into two subbands each containing only one

type of spin. If a mean field which incorporates all interactions is introduced, the strength per

atom is given by

HM = NM = NM0ϕ (4.1)

where ϕ = M/M0, and M0 is the satuartion magnetization of the material. Thus, ϕ is a

measure of the magnetization of the sample. The energy shift due to the mean field is

ǫm = −µBHM = −µBNM0ϕ = −kBΘϕ. (4.2)

This defines a temperature, Θ, which is characteristic of the material and equal to µBNM0/kB .

kBΘ is a measure of the onsite electron–electron repulsion in the material. Realizing that the
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field can be expressed as dF/dM allows the free energy contribution per electron of the mean

field at T = 0 K (Em/n) to be determined.

Em

n
= −

∫

HdM = −1

2
kBΘϕ2 (4.3)

This is the energy reduction induced by polarizing the conduction band electrons. The different

spin subbands are now split relative to one another. Due to the need to have an equal chemical

potential for both spin directions (as they are in the same metal) causes the subband with a

moment parallel to the applied field to have a larger population. Defining n+ and n− as the

parallel and antiparallel moment populations respectively the following relations exist.

n+ + n− = n (4.4)

nϕ = n+ − n− (4.5)

n± =
n

2
(1 ± ϕ) (4.6)

The populations are given by

n

2
=

∫ ǫF

0
g (ǫ) dǫ (4.7)

n

2
(1 ± ϕ) =

∫ ǫ±

0
g(ǫ)dǫ (4.8)

The previous equation can be rewritten as two integrals

n

2
ϕ =

∫ ǫ+

ǫF

g(ǫ)dǫ (4.9)

and

n

2
ϕ =

∫ ǫF

ǫ−
g(ǫ)dǫ (4.10)

with the use of Eq. 4.7. In the parabolic band the density of states, g(ǫ), varies like
√

ǫ and

the energy of the spin splitting is given by

ǫ± = ǫF (1 ± ϕ)2/3. (4.11)

The band energy change due to this splitting can be determined by integrating over occupied

states to give

Eb =

∫ ǫ+

ǫF

ǫg(ǫ)dǫ −
∫ ǫF

ǫ−
ǫg(ǫ)dǫ. (4.12)
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If ǫ± is given by Eqs. 4.9-4.11 then

Eb =
3

10
nǫF

[

(1 + ϕ)5/3 + (1 − ϕ)5/3
]

. (4.13)

This is the increase in energy caused by polarizing the conduction band electrons. Since the

electrons are fermions, the polarization requires a promotion of antiparallel moments to the

unoccupied, higher energies so that they may switch to a parallel orientation. The free energy

is now given by

E = Eb + Em = E(ϕ) =
3

10
nǫF

[

(1 + ϕ)5/3 − (1 − ϕ)5/3
]

− 1

2
kBΘϕ2 + E0. (4.14)

E0 contains all other terms in the free energy not explicitly related to the mean field effects.

An extremum for Eq. 4.14 is found by setting dE(ϕ)/dϕ equal to 0. Doing this gives

ǫ+ − ǫ− = 2kBΘϕ = ∆E (4.15)

∆E is the band splitting, also referred to as the Stoner gap energy. It is the energy introduced

by the mean field. The two extreme situations are ϕ → 0 and ϕ → 1. Combining Eqs. 4.11

and 4.15 the two limits on the magnetization can be explored.

ϕ = 0 ⇒ kBΘ

ǫF
=

2

3
(4.16)

ϕ = 1 ⇒ kBΘ

ǫF
=

1
3
√

2
(4.17)

These two results define three ranges of magnetic order. For the lower threshold where kBΘ
ǫF

< 2
3

no magnetic order exists. This is the case for palladium. The intermediate range where

2
3 < kBΘ

ǫF
< 1

3
√

2
there is magnetic order but the exchange is insufficient to saturate the spins

and the system is weakly ferromagnetic. This corresponds to ZrZn2. In the upper bound, for

kBΘ
ǫF

= 1
3
√

2
, the system is strongly ferromagnetic as is the case for Ni.

Based on the free energy it is possible to calculate the inverse susceptibility (1/χ) as the

second derivative of Eq. 4.14 with respect to ϕ. Doing so gives

n2µ2
B

χ
=

n2

4

(

1

g(ǫ+)
+

1

g(ǫ−)

)

− nkBΘ. (4.18)
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If the free energy is to be a minimum, Eq. 4.18 must be positive which helps provide a criterion

for spontaneous magnetic order. When ϕ = 0 the free energy must have a maximum so that as

ϕ increases E(ϕ) decreases and the moment bearing state is favored. In the non-magnetic case

it is obvious that g(ǫ+) = g(ǫ−) = g(ǫF ). As the spontaneous moment increases the inverse

susceptibility must decrease. This gives rise to the so-called Stoner criterion for spontaneous

magnetism

2

n
g(ǫF )kBΘ ≥ 1. (4.19)

In order to satisfy the Stoner criterion a system needs to have either a large density of states

at the Fermi energy or a large interaction term, kBΘ. It turns out that the interaction term is

an atomic property and is largely unaffected by chemistry, so the density of states in the metal

is the dominant mechanism by which Eq. 4.19 is met. In practice a parabolic, free-electron like

band will never have a density of states large enough for this to happen, so that assumption

will have to be abandoned.

To determine the temperature dependence of the magnetization and the susceptibility the

populations of the two subbands is written as

n± =

∫ ∞

0

g(ǫ)

exp
(

ǫ−η±

kBT

)

+ 1
dǫ (4.20)

where η± is the sum of the chemical potential, interaction energy, and Zeeman energy from an

externally applied field.

η± = µ ± kBΘϕ ± µBHext (4.21)

Combining Eqs. 4.6 and 4.20 allows for the calculation of the magnetization M given by

M = nµBϕ. (4.22)

Doing this gives a magnetic moment of

M = 2µB

(

µBHext + kBΘ
M

nµB

)
∫ ∞

0
g(ǫ)

∣

∣

∣

∣

df(ǫ)

dǫ

∣

∣

∣

∣

dǫ (4.23)

with f(ǫ) being the Fermi function. This can be rather simply solved for M explicitly to give

M =
2µ2

BHext
∫∞
0 g(ǫ)

∣

∣

∣

df(ǫ)
dǫ

∣

∣

∣ dǫ

1 − 2kBΘ
n )

∫∞
0 g(ǫ)

∣

∣

∣

df(ǫ)
dǫ

∣

∣

∣ dǫ
(4.24)
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The (static, zero field limit) susceptibility can be found by taking χ = M/Hext. This gives

χ =
2µ2

B

∫∞
0 g(ǫ)

∣

∣

∣

df(ǫ)
dǫ

∣

∣

∣ dǫ

1 − 2kBΘ
n

∫∞
0 g(ǫ)

∣

∣

∣

df(ǫ)
dǫ

∣

∣

∣ dǫ
. (4.25)

The condition for spontaneous ferromagnetism is that the inverse susceptibility go to zero at

a finite temperature. This condition is met when

2kBΘ

n

∫ ∞

0
g(ǫ)

∣

∣

∣

∣

df(ǫ)

dǫ

∣

∣

∣

∣

dǫ = 1. (4.26)

The temperature dependence implied by the above equation is given by

2g(ǫF )
kBΘ

n
(1 + aT 2

C) = 1. (4.27)

The coefficient a is related to the characteristic Fermi dengeneracy temperature and is given

by

a =
π2

6
k2

B

(

g(ǫF )′′

g(ǫF )
−
(

g(ǫF )′

g(ǫF )

)2
)

(4.28)

which comes from the Sommerfield expansion. If TC << TF then Eq. 4.27 can be expressed as

kBΘ =
n

2g(ǫF )

(

1 +
T 2

C

T 2
F

)

. (4.29)

To determine the behavior of the magnetization as temperature is varied the susceptibility from

Eq. 4.18 is revisited and another Sommerfield expansion is done to pull out a magnetization

dependence in χ.

n2µ2
B

χ
=

n2

2g(ǫF )

(

1 − cϕ2
)

− nkBΘ (4.30)

The coefficient c is given by

c =
1

8

n2

g(ǫF )2

[

g(ǫF )′′

g(ǫF )
− 3

(

g(ǫF )′

g(ǫF )

)2
]

. (4.31)

For equilibrium

kBΘ =
n

2g(ǫF )

(

1 − 1

3
cϕ2

)

. (4.32)

If there is a minimum in χ for zero moment, then as the moment grows

2

n
g(ǫF )kBΘ ≤ 1 − 1

3
cϕ2. (4.33)
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A negative value of c fulfills this condition for all values of ϕ. This occurs when the Fermi

energy is at a maximum in the density of states. Under this umbrella

kBΘ =
n

2g(ǫF )

(

1 +
1

3
|c|ϕ2

)

(4.34)

Equating similar terms in Eqs. 4.29 and 4.34 allows for a determination of how the Curie

temperature scales with magnetization. Equating like terms from both expressions gives

ϕ2 =
3

|c|
T 2

C

T 2
F

(4.35)

This shows that in the Stoner model the Curie temperature scales linearly with the magne-

tization, and it is expected that systems with larger magnetizations will have higher Curie

temperatures.

In the case of very weak itinerant ferromagnets (0 < ϕ << 1) it is possible to expand

Eq. 4.20 in powers of ϕ. To first order at zero temperature this gives

2

n
g(ǫF ) (kBΘϕ + µBHext) = ϕ (4.36)

Using the temperature dependencies of the coefficients a and c to substitute for the T = 0

value of ϕ leads to

2

n
g(ǫF ) (kBΘϕ + µBHext) = ϕ(1 − aT 2) − 1

3
cϕ3. (4.37)

When c and a are both positive and using Eq. 4.35 where a = T 2
F yields

2

n
g(ǫF )kBΘϕ = 1 +

1

3
|c|ϕ3, (4.38)

|a|T 2
C =

1

3
|c|ϕ3

0, (4.39)

and

χ0 =
3µ2

Bg(ǫF )

|c|ϕ2
0

. (4.40)

Substituting Eq. 4.22 for ϕ0 the magnetic isotherms for weak itinerant systems take the form

(

M(H,T )

M(0, 0)

)3

− M(H,T )

M(0, 0)

(

1 − T 2

T 2
C

)

=
2χ0H

M(0, 0)
. (4.41)
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In zero applied field the square of the magnetization is seen to decrease like T 2 as the temper-

ature is increased.

M2 = M(0, 0)2
(

1 − T 2

T 2
C

)

(4.42)

Rewriting Eq. 4.41 and taking dH/dM as the inverse susceptibility it is seen that

1

χ
=

3M2

2χ0M2
0

− 1

2χ0

(

1 − T 2

T 2
C

)

. (4.43)

For the paramagnetic case, the magnetization vanishes and

χ = 2χ0

(

T 2

T 2
C

− 1

)−1

. (4.44)

This expression is sometimes written as

χ =
χP

1 − Z
(4.45)

where χP is the Pauli paramagnetism and Z is the Stoner enhancement factor. The Stoner

condition, i. e. ϕ > 0, may be expressed as Z = 1 when casting the susceptibility in this form.

In the ferromagnetic case the temperature dependence of M must be considered. Doing this

shows that the susceptibility in the ordered state varies like

χ = χ0

(

1 − T 2

T 2
C

)−1

. (4.46)

The factor of 2 reduction in the susceptibility in the ordered state when compared with the

paramagnetic state is a reflection of the assumption that above TC the magnetic moment

vanishes completely. An applied field can be considered to create spins from a vacuum in the

paramagnetic state. Below TC , however, the field must flip a spin from (-) to (+) to induce a

change in the moment.

4.3 Spin Fluctuations

The origin of the shortcomings in the Stoner model is its neglect of collective excitations.

The only mechanism by which the magnetic moment can be destroyed is through single particle

spin flips across the Stoner gap. As was seen in the previous section, in order to account for
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the observed magnetization the resulting gap implies a very large Curie temperature. An

attempt to rectify this problem is to try to consider how very low energy excitations in the

magnetization might be accommodated, much like spin waves in local moments. The newly

inherited problem is that without a lattice of moments it is much more difficult to establish the

waves. To sidestep this problem and assumption of fluctuations of the spin density is made.

It was first applied to itinerant ferromagnets by Moriya and Kawabata (1973). A particularly

clear derivation of spin fluctuations is provided in Mohn (2003) which is followed here.

One definition of equilibrium is that the physical quantities which characterize the equilib-

rium are always very close to their average value. An alternative definition of an equilibrium

state is one in which the entropy, S, is maximized. The probability of a given macrostate being

realized may be written as

p(z) = AeS(z) (4.47)

where z represents a quantity that characterizes the equilibrium and A is a constant. A

constraint on z is that it must not be forced constant by a conservation law. Taking the

equilibrium condition on z to be z =< z >= 0, if entropy is to be a maximum then

∂S(z)

∂z
= 0 (4.48)

and

∂2S(z)

∂z2
< 0. (4.49)

With small z and the above two conditions on the first and second derivatives a Taylor expan-

sion of S may be carried out and, up to second order

S(z) = S(0) − ν

2
z2. (4.50)

This implies, with Eq. 4.47, that

p(z)dz = Ae−νz2/2dz. (4.51)

A may be calculated by requiring that
∫

p(z)dz = 1, that is the probability that the system is

in some state is 1. Realizing that the probability is only significant for small values of z allows
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the integral to be evaluated over the range −∞ to +∞. Carrying out this integral gives

A =

(

ν

2π

)
1

2

(4.52)

Therefore, Eq. 4.51 is now given by

p(z)dz =

(

ν

2π

)
1

2

e−νz2/2dz. (4.53)

This is a Gaussian distribution with a maximum a z = 0. With k equal to an integer

〈

z2k
〉

=

(

ν

2π

)
1

2

+∞
∫

−∞
z2keνz2/2dz = ν−k (2k − 1)!!. (4.54)

This means that
〈

z2
〉

= ν−1 and
〈

z4
〉

= 3ν−2 = 3
〈

z2
〉2

, and all even higher order average can

be expressed in terms of
〈

z2
〉

. Armed with this knowledge, the fluctuations of the magnetic

moment may now be explored.

Within a Landau theory of magnetic phase transitions the free energy can be written as

F = aM2 +
b

2
M4 (4.55)

where a = − 1
χ0

(

1 − T 2

T 2
C

)

and b = 1
χ0M0

recalling the Stoner result. It should also be noted

that within the Stoner framework TC is of the order of 103 K. This leads to a neglect of the

temperature dependence of the a term. As in the local moment case, by symmetry only even

powers of the magnetization may appear, and M is often treated as a scalar quantity. However,

the inclusion of fluctuations requires that attention be given to the vector nature of both M and

its fluctuations. Still, due to symmetry considerations the volume integral over odd powers in

the fluctuations vanishes always. Setting m(r) as the locally fluctuating moment it is assumed

1

V

∫

(m(r))n dV = (mn) for n = 2k (4.56)

while it is zero for n = 2k + 1.

For M pointing along some axis there will be two fluctuation directions perpendicular to

and one along M . If M is taken parallel to the z-axis the three fluctuations may be written

as m1 = mx, m2 = my, and m3 = mz. The original order parameter in the free energy
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(Eq. 4.55) can be replaced by the statistical average of the new order parameter, including the

fluctuations.

M2n →
〈(

M +
3
∑

i=1

mi

)2n〉

(4.57)

Making this substitution, expanding, and setting the odd powers to zero gives

F = a
(

M2 + 2
〈

m2
⊥
〉

+
〈

m2
||
〉)

+
b

2

(

M4 + M2
(

6
〈

m2
||
〉

+ 4
〈

m2
⊥
〉)

+ 8
〈

m2
⊥
〉

+ 3
〈

m2
||
〉

+ 4
〈

m2
⊥
〉 〈

m2
||
〉)

(4.58)

In the above m⊥ and m|| denote the fluctuations perpendicular and parallel to M , respectively.

In the limit of zero temperature the fluctuation amplitude is zero and this reduces to Eq. 4.55.

Also, the dynamics of the fluctuations scale with the static susceptibility through the coeffi-

cients a and b. Keeping with the Landau theory of phase transitions, the Curie temperature

corresponds to the temperature at which the susceptibility diverges (or the inverse suscepti-

bility is zero). There is the additional constraint that M = 0 which implies there is no longer

a difference between
〈

m2
⊥
〉

and
〈

m2
||
〉

. The inverse susceptibility is calculated by χ−1 = ∂2F
∂M2

with M = 0 giving

χ−1 = 2a + 2b × 10
〈

m2
〉

= 0. (4.59)

In the above, T = TC and
〈

m2
〉

is the fluctuation amplitude, keeping in mind that there is

no preferred direction if the system is not ordered. At the Curie point the magnitude of the

fluctuations is given by
〈

m2
C

〉

=
M2

0

5
(4.60)

Therefore, the amplitude of the fluctuations at the Curie temperature (
〈

m2
C

〉

) is determined

by ground state properties. Coupling Eq. 4.60 with the idea that the fluctuations must disap-

pear for T = 0 the temperature dependence of the fluctuations can be determined. From the

fluctuation-dissipation theorem classical fluctuations basically change linearly with tempera-

ture. Thus,
〈

m2
||
〉

(T ) =
〈

m2
⊥
〉

(T ) ≃
〈

m2
C

〉 T

TC
=

M2
0

5

T

TC
(4.61)

is the approximate temperature variation in an isotropic system. From Eq. 4.58 M(T ) can be

calculated directly by minimizing the free energy with respect to the magnetization. Setting
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∂F/∂M = 0 and substituting the expressions for a and b given just after Eq. 4.55 gives

M2 = M2
0 − 3

〈

m2
||
〉

+ 2
〈

m2
⊥
〉

. (4.62)

If an isotropic system is assumed (Eq. 4.61) the resulting magnetization variation with tem-

perature is

M2(T ) = M2
0

(

1 − T

TC

)

. (4.63)

The more rapid decrease in M as T increases when compared with the Stoner result derives

from the consideration of low energy excitations.

Examining the temperature behavior of the order parameter defined in Eq. 4.57 shows

another positive feature associated with these spin density fluctuations.

〈(

M +
3
∑

i=1

mi

)2〉

= M2
0

(

1 − T

TC

)

+ 2
〈

m2
⊥
〉

+
〈

m2
||
〉

. (4.64)

For temperatures less than TC (in an isotropic system) this gives

M2
0

(

1 − 2

5

T

TC

)

(4.65)

as the order parameter variation with temperature. For temperatures greater than TC the

right hand side of Eq. 4.64 is

M2
0

3

5

T

TC
. (4.66)

This last result shows that even in the paramagnetic state, the order parameter is locally

non-zero even though globally it averages to zero. This recalls a Curie-Wiess-like behavior for

T > TC , which is commonly observed for many itinerant ferromagnets. This stands opposed

to the Stoner result where the paramagnetic state is completely non-magnetic (other than as

a usual metal).

From Eq. 4.59 it is possible to now determine an approximate temperature dependence for

the susceptibility both above and below the ordering temperature.

χ(T ) = χ0

(

1 − T

TC

)−1

for T ≈ TC , (4.67)

χ(T ) = 2χ0

(

T

TC
− 1

)−1

for T ≥ TC . (4.68)
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A Curie constant can be extracted from this result as well which is

C =
d
(

χ−1
)

dT
=

1

2χ0TC
. (4.69)

This is seen not to vary with temperature as it did in the Stoner model. Therefore, it reproduces

the linear behavior observed in χ−1 vs. T in the paramagnetic state.

The preceding work was developed for weakly ferromagnetic systems. Lonzarich and Taille-

fer (1985) extended this work to stronger ferromagnets and showed that in between the Stoner

and spin fluctuations limits there is an intermediate strength where the temperature variation

of the inverse susceptibility is like T 4/3 just below TC . In all cases, though, the static magnetic

susceptibility decreases as temperature decreases. This is in direct opposition to the experi-

mentally observed results in the TDR data, indicating that, dispite the qualitative agreement

between χstatic and χTDR in ZrZn2, this material is not in a static regime at frequencies of a

few 10’s of megahertz.

4.4 Semi-Phenomenological Model of Itinerant Ferromagnets

The development of the Stoner theory [Stoner (1938)] was driven by a desire to understand

how a fractional Bohr magneton magnetic moment could be created in nickel. The failures

of Stoner theory, i.e. Curie temperatures that are too high and the lack of a Curie-Weiss

susceptibility above TC , were impetus for the development of the spin fluctuation theory of

Moriya and Kawabata [Moriya and Kawabata (1973)]. Whereas spin fluctuation theory does

predict a Curie-Weiss type paramagnetic state and largely correct the Curie temperatures,

neither it nor the Stoner theory adequately describe the broad maximum seen in the rf data.

Indeed, both theories derive a strictly zero field limit of χ just below TC of the same form

χ(T < TC) = χ0

(

1 −
(

T

TC

)n)−1

. (4.70)

The difference between the two theories is the value of n. For Stoner theory n = 2 while

for spin fluctuations n = 1 [Mohn (2003)]. There is an intermediate regime where n = 4/3

[Lonzarich and Taillefer (1985)]. The Stoner theory does predict a nonzero χ at T = 0 and

H = 0 [Wohlfarth (1968)].
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A zero field limit calculation, however, is not representative of a ferromagnetic system be-

low TC . As the system begins to order there is a non-zero field in the sample from the ordered

moments themselves. It is interesting that this internal field, which has been incorporated

into the theory to account for the ordering is neglected in calculations of the magnetic suscep-

tibility. In itinerant systems this mean field should continue to increase as T decreases and

the fraction of spin polarized conduction electrons increases. To account for the self–field a

modified Brillouin function for a spin-1/2 system in a magnetic field is proposed in Eq. 4.71

[Vannette and Prozorov (2008)]. A spin-1/2 system is chosen because in itinerant systems it

is the single electron spin that is of interest.

m∗(t, h) = m∗
0 tanh

h

1 − tn
. (4.71)

In the above equation, t = T
T ∗ where T ∗ is a characteristic temperature not necessarily

equal to TC and h is a dimensionless field term. It should be noted that this form does not

represent the magnetization of the sample. Rather, m∗ may be taken as some measure of the

unpolarized fraction of the conduction band. Differentiating with respect to h gives

χ(t, h) =
χ0

1 − tn
cosh−2 h

1 − tn
. (4.72)

In the limit h → 0, this reduces to Eq. 4.70 if T ∗ → TC , even though we are not beginning

with the proper form for the magnetization.

Figure 4.3 presents the calculated curves for m∗ from Eq. 4.71, 1−m∗, and χ from Eq. 4.72.

The observed behavior of 1−m∗ is qualitatively similar to the expected magnetization versus

temperature curve. The susceptibility curve shows the basic features seen in the TDR data in

the itinerant systems, as presented below.

As a test of the validity of the premise on which the proposed model is based, i. e. that

the TDR measures the fluctuating component of the band magnetism, measurements on

YFe2Zn20 and YCo2Zn20 were made. These compounds are part of the RT2Zn20 family, some

of which show extreme Stoner enhancement of the conduction band. Jia et al. (2007) showed

that YFe2Zn20 has a Stoner Z approaching the ferromagnetic limit while YCo2Zn20 has a
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Figure 4.3 Calculation of m∗ (solid line), 1−m∗ (dashed line) and dm∗/dh

(dotted-dashed line) for h = 0.2, m0 = 1, and n = 1 plotted

against t.

Z closer to that of copper. The small Z found in the cobalt compound suggests that TDR

measurements of χTDR from YCo2Zn20 should show a resistive signal, whereas the large Z

in YFe2Zn20 suggests that TDR measurements of χTDR should be resistive, with an enhance-

ment due to the large fluctuations associated with proximity to ferromagnetic order. In order

to facilitate a more accurate comparison between the two materials, samples of similar size

and shape leading to similar filling factors were used. Figure 4.4 shows the measured change

in susceptibility relative to 2 K for YCo2Zn20 and YFe2Zn20. Both samples show a monotonic

increase in χTDR consistent with the resistive behavior [Jia (2008)]. The inset to Fig. 4.4 shows

the measured absolute change in χTDR for the same two samples.

Both samples exhibit a diamagnetic χTDR from 2–50 K. The observed susceptibility of

YFe2Zn20 is larger than that of YCo2Zn20 by more than a factor of 4 over the entire temperature

range. A fraction of the differences in χTDR between the two compounds may be accounted

for by the different resistivities of each. From 2–300 K YCo2Zn20 has a lower value of ρ than

YFe2Zn20. At 50 K the resistivity of YFe2Zn20 is approximately 10 µΩ–cm while YCo2Zn20 has
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Figure 4.4 Main panel : Change in measured susceptibility for

YFe2Zn20 and YCo2Zn20. Inset : Measured susceptibility

for the same two compounds on an absolute scale.
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a resistivity of approximately 7 µΩ–cm. The difference in ρ between the two samples decreases

with decreasing temperature [Jia (2008)]. Based on these figures it is possible to estimate the

difference in χTDR due to the difference in ρ between the two samples.

Define χ1 (χ2) as the measured susceptibility of sample 1 (2) with resistivity ρ1 (ρ2),

permeability µ1 (µ2), geometric constant R1 (R2) measured at frequency f1 (f2). Provided

δ1,2, given by Eq. 1.1 is much smaller than R1,2, then Eq. 1.17 reduces to

4πχ1,2 = 1 − µ1,2δ1,2

2R1,2
. (4.73)

Under the conditions that µ1 = µ2, R1 = R2, and f1 = f2 Eq. 4.73 may be written as

4πχ1,2 = 1 − c
√

ρ1,2. (4.74)

It is straightforward to show that

∣

∣

∣

∣

χ1 − χ2

χ1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

√
ρ1 −

√
ρ2√

ρ1

∣

∣

∣

∣

∣

. (4.75)

Taking the iron compound as sample 1 and the cobalt compound as sample 2, at 50 K the right

hand side of Eq. 4.75 is about 0.16. Using data collected with the TDR, the left hand side of

Eq. 4.75 is about 4.23. Only about 4% of the observed difference in χTDR for YFe2Zn20 and

YCo2Zn20 can be accounted for through differences in ρ. Allowing for variations in R and

f between samples and runs respectively only accounts for another 5–10% of the observed

difference. One of the assumptions leading to this conclusion must be wrong. All parameters in

Eq. 4.73 have been accounted for with the exception of magnetic permeability. It was assumed

that µ1 = µ2. Relaxing this condition allows for the majority of the observed difference in χTDR

for these two materials to be attributed to the enhanced susceptibility of the conduction band in

YFe2Zn20. The change in χTDR in YFe2Zn20 is slightly greater than that for YCo2Zn20. Given

the proximity to ferromagnetic order in YFe2Zn20, the magnetic susceptibility is expected to

grow like T−1, increasing the low difference in χTDR between the two compounds. That this

behavior is not observed here is curious. A possible explanation is that in a low field, dynamic

regime, the Stoner enhancement of the Pauli paramagnetism is equivalent to multiplication

by a temperature independent constant, but it is not clear that this is the case. Frequency

resolved measurements would help in clarifying this point.
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4.5 Materials Studied

4.5.1 ZrZn2

Ferromagnetism in ZrZn2 was discovered Matthias and Bozorth in 1958 [Matthias and Bo-

zorth (1958)]. It was a surprising development as this was the first transition metal compound

to manifest magnetic order that did not contain Fe, Ni, Co, Cr, or Mn. The only mechanism

that could be invoked for the observed small magnetic moment of 0.13 µB per formula unit was

through conduction band polarization. Since the time of the discovery of ferromagnetic order

samples and measurements have been refined and the saturated moment has shifted up to 0.17

µB per formula unit and the Curie temperature has shifted down to about 28 K [Yelland et al.

(2005)]. The fields applied to measure the magnetic moment in the original paper are believed

to be on the order of 5 kOe. The only notation is in the graph of the data where “H=3,900”

and “H=10,800” are labels on the two magnetization curves. If the units are oersted then the

large applied fields could easily shift the observed transition temperature up.
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Figure 4.5 χTDR vs. T for the weak itinerant ferromagnet ZrZn2 in various

applied static fields. Inset Detail near phase transition region.
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Figure 4.5 presents the rf susceptibility for single crystal ZrZn2 in applied static fields.

The behavior of χTDR at the radio frequencies stands in stark contrast to the accepted local

moment systems (Ch. 2). Whereas the local moment systems manifest a strong, well-defined

peak in χTDR at TC which shifts to higher temperatures in applied fields, the itinerant system

exhibits a broad maximum in χTDR below TC which shifts to lower temperatures as field is

applied. This difference was first reported in 2008 [Vannette et al. (2008d)]. The inset to

Fig. 4.5 shows that at TC a local maximum is absent.

There is a qualitative similarity between χTDR and χac as determined from conventional

measurements when applied to local moment ferromagnets. Both data sets manifest a peak

in the measured susceptibility at the Curie temperature. This is to be contrasted with the

difference between the static moment data and χTDR in the local moment magnets. Static

moment shows an increasing magnetization with decreasing T below TC . Contrary to this, there

is a qualitative similarity between the static moment data and χTDR in ZrZn2. Therefore, as

stated previously, it is not unreasonable to at first assume itinerant ferromagnets are still in

the static limit at measurement frequencies of 10-30 MHz.

The low temperature resistivity of ZrZn2 exhibits unusual T 5/3 behavior [Yelland et al.

(2005)]. Fig. 4.6 shows (1 + 4πχ)2 for ZrZn2 in an applied field of 1.2 kOe vs. T 5/3. The solid

line is the data and the dashed line is a calculated ρ0 + AT 5/3 curve. The low temperature

data are seen to fall on the calculated curve, showing that the measured χTDR in this field is a

direct probe of the behavior of the resistivity with essentially no contribution from the spins.

In this case, the spin component of the susceptibility has been suppressed below the level of

detection. The inset to Fig. 4.6 is the full scale resistivity vs. temperature in the same field.

The observation that the temperature dependence of the resistivity inferred from χTDR in this

field is consistent with the zero field behavior will be of use in analyzing the spin component

of the measured χTDR.
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Figure 4.6 Arbitrary ρ vs. T 5/3 for ZrZn2 in a 1.2 kOe applied field (solid

line) and calculated ρ0 + AT 5/3 (dashed line). Inset: ρ vs T up

to 40 K.

4.5.2 Y9Co7

Y9Co7 has been reported to show itinerant ferromagnetism at 4.5 K with an extrapolated

moment of 0.09 µB/f. u. as determined by heat capacity, low frequency ac susceptibility, and

magnetization studies [Sarkissian and Grover (1982), Yamaguchi et al. (1984)]. Further, at ap-

proximately 3 K this material enters a superconducting state. There is one study [Rastogi and

Coles (1985)] that suggests this compound is not truly ferromagnetic, however the consensus

in the sparse literature is that long range ferromagnetic order does exist here, and the purity

of the starting elements is a powerful indicator of whether or not the FM order is manifest.

Qualitatively χTDR data are similar to that seen in ZrZn2 (Fig. 4.7). These measurements

suggest the itinerant ferromagnetism sets in at a much higher temperature (TC ≈ 9 K), if the

data are assumed to be consistent with ZrZn2 and the yet to be discussed GdFe2Zn20 pure and

doped series of compounds.



122

-3000

-2500

-2000

-1500

-1000

c
ac

 (
a.

u
.)

8642

T (K)

    Happ (Oe)

      0
     20
     40
     70

Y9Co7

SC

FM

PM

Figure 4.7 χTDR vs. T for Y9Co7 in four applied fields. SC, FM, and PM

denote the superconducting, ferromagnetic, and paramagnetic

states, respectively.



123

4.5.3 Half-Band Ferromagnet NiMnSb

NiMnSb is an example of the so-called half-band ferromagnets. These are materials that

are supposed to exhibit complete polarization of the conduction band at low temperatures

[de Groot et al. (1983)]. They are sometimes referred to as half-metallic systems as one

spin-subband is metallic while the other is gapped at zero temperature. This material has a

Curie temperature of approximately 730 K [Borca et al. (2001)]. A plot of χTDR of NiMnSb

along with a measurement of the background due to the empty sample holder is presented in

Fig. 4.8. On cooling, near the published ordering temperature a dramatic increase in χTDR is

evident. It is difficult to envision a scenario whereby the resistance of a metal will dramatically

increase with decreasing temperatures for T > 700 K. If χTDR at the highest temperature is
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Figure 4.8 Plot of χTDR vs. T for NiMnSb and the empty Inferno sample

holder.

dominated completely by the sample holder, then it is reasonable to set the values at this point

in the two runs as equal and subtract the sample holder contribution. This approximation is
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supported by the observation that the induced frequency shift from room temperature to 700

K is approximately the same for both the empty sample holder and the sample plus holder

runs. Assuming the contributions of the two pieces simply add, we can subtract the frequency

shift due to the holder from the NiMnSb run to get an idea of what the sample response is.

This is presented in Fig. 4.9.
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Figure 4.9 Magnetic susceptibility of NiMnSb with the sample holder con-

tribution subtracted.

The behavior of NiMnSb stands in some contrast with the ZrZn2 data in that the increase

in χTDR below TC is much sharper. This may be an artifact of the background subtraction

process, or it may be a real effect hinting at the possibility that this material shows at least

some local moment character. The contrast between NiMnSb and local moment systems at

TC is obvious, though. Whereas the local moments show a well defined peak, the half–band

magnet only shows a rapid increase in χTDR followed by a gradual decrease. This is more

consistent with χTDR data on GdFe2Zn20, presented in Ch. 5. Taken together, these data
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suggest that there is a certain degree of localization in NiMnSb with the low tempearture

behavior still manifests strong fluctuations.

4.6 Analysis of ZrZn2 and Y9Co7

An attempt to fit the model developed to explain the data in itinerant systems is made.

However, there is the problem that the as measured susceptibility contains a resistivity compo-

nent. This must be dealt with in a reasonable manner in order to explore the magnetic effect.

From Fig. 4.6 it is evident that the application of a 1.2 kOe field is insufficient to invoke a

significant change in the ρ(T ) behavior in ZrZn2, going so far as to recover the T 5/3 response.

Therefore it is reasonable to assume that the resistivity will not be affected by lower fields.

To account for the resistivity contribution to the measured susceptibility in ZrZn2, data

collected in a static field of 1 kOe were subtracted from lower field runs. This field was

sufficiently large to completely suppress the maximum in χTDR while being small enough that

it is not expected to result in a significant magnetoresistance.

Data fits to the model were attempted for various values of n. It was found that n = 1,

corresponding to the spin fluctuations theory, gave the best agreement. Figure 4.10 shows best

fits of Eq. 4.72 to the TDR data for ZrZn2. The best fit was determined by minimizing the sum

of the squared differences between the data points and the fit curve at constant temperature.

The resulting values of the fitting parameters are shown in Fig. 4.11. χ0 decreases with

applied H. T ∗ is constant within the errors and it is approximately equal to TC . The value

of h is approximately constant up to applied fields of about 125 Oe and thereafter grows

monotonically as H is increased. Fields for which h increases are those where the fits become

worse. Even though the higher field data are not well recreated by the model, the fact that

the lower non-zero field data are fit reasonably suggests that this is a good direction to explore

for understanding of this observation.

Similar fitting was done on the Y9Co7 sample in the ferromagnetic state. Results of those

fits are shown in Fig. 4.12. Again, n = 1 was found to give the best fit for the data. Figure 4.13

shows the fit parameters for the Y9Co7 data. At the low temperature end, the superconducting
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state is beginning to compete more aggressively with the ferromagnetism, and the zero field

data shows a strong deviation. This deviation is less pronounced as the applied field increases.

Interestingly, if T ∗ is assigned the value of TC as is apparently the case from the ZrZn2 data,

then this suggests that the Curie temperature for this compound is nearly 9 K. This is more

than two times larger than what was previously thought. Curiously, even though both systems

show strikingly different transition temperatures, and very different suppression fields, the

effective fields from the fitting are approximately the same.
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Figure 4.12 Comparison of data (points) and fit (lines) for three applied

fields in a polycrystalline sample of Y9Co7.

Both systems that are fit to this model exhibit very large error bars (±10% or more).

However, given that this behavior was not predicted by the successful theories on itinerant

systems, the fact that the model comes this close is intriguing. It is likely that the true

behavior is nothing like a hyperbolic cosine. This is only meant to serve as a starting point

giving the general direction in which to look for solutions to this theoretical problem.
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Figure 4.13 Y9Co7 fit parameters with estimated errors.

4.7 Summary

The sensitivity of TDR measurements to changes in χTDR has been applied to itinerant

ferromagnetic systems. In contrast to local moment systems, the ordered state response of the

magnetic susceptibility shows a broad maximum which suppresses in applied field and shifts to

lower temperatures. Comparison with static measurements show that the observed response is

not the result of residing in the static regime. Conventional theories do not adequately predict

nor describe the observed effect. A model based on the presence of a fluctuating component of

the conduction band was proposed and fits the data for ZrZn2 and Y9Co7 reasonably well. The

validity of the model is further confirmed by comparison of measurements of the non–magnetic,

Stoner enhanced YFe2Zn20 and non–magnetic, non–enhanced YCo2Zn20 compounds.
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CHAPTER 5. Magnetic Susceptibility of Selected Members of RT2Zn20

5.1 Introduction

In metallic ferromagnets there is always the question of whether a particular system is

itinerant or local in character. The absence of a theory that simultaneously explains both

the local moment and itinerant magnetism is a long standing problem in condensed matter

physics. A major step in the phenomology of local moment vs. itinerant magnetism was

the Rhodes–Wholfarth (RW) theory [Rhodes and Wohlfarth (1963)]. Under this theory one

plots the ratio of the paramagnetic moment per ion to the saturated moment per ion in the

ordered state against transition temperature for any ferromagnet. Materials showing a large

RW ratio are candidate itinerant systems, while those with RW ratios close to 1 are likely local

moment systems. It is seen that most materials have moderate RW ratios, indicating that

most materials manifest properties seen in both local moment and itinerant magnets. The

experimentally observed relationship implied by the RW curve does not offer much insight into

how the gap between intinerant and local moment physics might be crossed, however.

The first reasonably successful theory of itinerant magnetism may be attributed to Stoner

[Stoner (1938)]. Improvements on the Stoner theory have been made, most notably the advent

of the spin fluctuation theory [Moriya (1985)]. However, a discussion of whether or not a par-

ticular material manifests itinerant magnetism may be carried out under the terminology of

the Stoner theory. By considering the effect of onsite electron–electron (e–e) repulsion, Stoner

showed that under certain conditions it is energetically favorable for the conduction band in a

metal to spontaneously spin polarize to a some degree. This polarization is responsible for the

observed magnetic moment in itinerant ferromagnets. Even in the absence of a finite tempera-

ture conduction band polarization (i. e. a finite Curie temperature) the magnetic susceptibility,
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χ, is enhanced due to the e–e interactions. The enhancement of χ often is described by the

so–called Stoner Z factor. The susceptibility enhancement is in comparison to the calculated

susceptibility as determined by band structure calculations, for example, with e–e interactions

switched off. The relationship between the enhanced χ and the unenhanced χ0 is given by

χ =
χ0

1 − Z
(5.1)

where χ0 is given by µBg (EF ). Z = 1 is taken as the Stoner criterion for the onset of itinerant

ferromagnetic order.

It would be beneficial to have a system whereby the itinerant component of the magnetism

could be tuned from the Stoner limit to nearly pure local moment physics. Recently a series

of dilute rare earth–transition metal compounds RT2Zn20 was shown to have just such this

tunable property [Jia et al. (2007)].

The properties of YFe2Zn20, YCo2Zn20, and Gd(FexCo1−x)2Zn20 have been studied in

detail [Jia et al. (2007), Jia et al. (2008)]. YFe2Zn20 is a highly Stoner enchanced paramagnet

(Z ≈ 0.89) while the isostructural YCo2Zn20 is only weakly paramagnetic. High field (50

kOe) M/H vs. T data coupled with low temperature specfic heat measurements suggest that

by titrating Co into YFe2Zn20 it is possible to continuously tune the Stoner Z from a value

greater than that for Pd (Z ≈ 0.83) to a value comparable to Cu (Z ≈ 0.29). Substituting Gd

for Y in either compound leads to long range magnetic order. In the case of GdFe2Zn20 the Gd

ions order ferromagnetically with a mixed local moment/itinerant Fe flavor at an astonishingly

high 87 K, while for GdCo2Zn20 the Gd ions settle into a local moment antiferromagnetic order

at a more reasonable 5.7 K. The FM ordering temperature in GdFe2Zn20 is surprising because

the Gd–Gd separation is approximately 6 Å [Nasch et al. (1997)]. Such a large separation

normally implies very weak coupling between the rare earth ions. However, it was found that

the highly Stoner enhanced conduction band measured in YFe2Zn20 leads to a enhances the

RKKY interaction allowing for the high ordering temperature [Jia et al. (2007), Jia et al.

(2008)]. Since the cobalt containing analogue lacks the greatly enchanced conduction band,

the ordered state sets in at a more conventional temperature.

Similar to the yttirum compounds, it is possible to titrate cobalt into the GdFe2Zn20 host to
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study how the transition to GdCo2Zn20 progresses. Previous static measurements have shown

that (a) the transition from FM to AFM order occurs only for fairly large Co concentrations

(≥75%), (b) the transition temperature decreases monotonically with increasing Co, and (c)

Cobalt doping directly affects the magnetic sublattice by replacing iron atoms and simul-

taneously contributes one extra valence electron per formula unit. Since the details of the

Stoner enhancement depend both on the conduction electron density of states and on the ion

type, finding a method to affect the conduction band without directly influencing the mag-

netic sublattice would be beneficial. Aluminum doping on the zinc sites allows for just such a

modification. Each aluminum ion replacing a zinc ion contributes one extra valence electron

per formula unit, just as in Co doping. However, since the Zn appears to be a spectator in

the magnetic order, Al doping is not expected to directly affect the magnetic Fe sublattice.

A comparison of the two types of doping (Co→Fe and Al→Zn) elucidated the different roles

played by the conduction band and the magnetic sublattice in the order [Ni et al. (2008)]. Any

measurement of a magnetic property will be a convolution of both the local moment rare earth

and the itinerant transition metal, however. What is required is a method to deconvolve the

two contributions.

5.2 Data and Discussion

To facilitate comparison of χTDR across the different compounds, samples of similar size

and shape were chosen. Gd(FexCo1−x)2Zn20 samples with x =0.12, 0.25, 0.5, 0.75, and 1

and GdFe2(ZnyAl1−y)20 samples with y =0.005, 0.017, 0.021, and 0.049 were studied here. In

addition pure GdFe2Zn20 was measured as well.

5.2.1 Parent Compounds

Fig. 5.1 presents χTDR vs. T for pure GdFe2Zn20 and GdCo2Zn20 in zero applied static

field. The gadolinium ions order ferromagnetically in GdFe2Zn20 at TC =87 K [Jia et al.

(2007), Jia et al. (2008)]. Below this temperature χTDR exhibits a large increase followed by

a slow decrease. GdCo2Zn20 does not manifest any increase in χTDR at TN ≈5.7 K where



132

the gadolinium ions order antiferromagnetically [Jia et al. (2008)]. Rather it shows a rapid

decrease in the measured susceptibility upon cooling into the antiferromagnetic state. The

difference in χTDR is explained by the extremely weak perturbation field used here. Magnetic

susceptibility is a measure of how the magnetic moment of a sample changes in response

to a change in magnetic field. In ferromagnetic materials the exchange interaction favors

parallel alignment of neighboring spins. Perturbations of one moment via an external field

are transferred to neighboring moments through the exchange interaction. It is energetically

favorable for the bulk moment of the sample to change in response to the applied field, in this

case the rf field from the coil. Conversely, in antiferromagnets exchange interactions lead to

antiparallel alignment of spins (in some configuration) giving rise to no net moment in the

sample. If a particular localized moment is gently perturbed, the exchange interaction will

dominate and no change in the bulk moment of the sample will occur. In the vicinity of an

ordering temperature exchange energy and thermal energy are on equal footing. It is very

easy to change the orientation of a given spin through the application of a magnetic field. In

ferromagnets, this leads to an enhanced rf susceptibility as T → TC . In antiferromagnets,

however, it is energetically favorable for the spins to order without a bulk moment. Therefore

the rf susceptibility experiences no enhancement as T → TN . The decrease in the measured

χTDR is associated with a decrease in resistivity due to a loss of spin disorder scattering.

The large value of χTDR in the ordered state for GdFe2Zn20 has been attributed to the

enhanced susceptibility of the conduction band [Vannette et al. (2008d), Vannette and Prozorov

(2008)]. Such a conclusion is supported by the data on YFe2Zn20 andYCo2Zn20 presented in

Ch. 4.

Figure 5.2 presents field dependent χTDR(T ) data for GdFe2Zn20. Applying a static bias

field to GdFe2Zn20 suppresses the amplitude of the broad maximum below TC and shifts it to

lower temperatures. The inset of Fig. 5.2 shows that a small amplitude local maximum slightly

below the published ordering temperature emerges in applied field. The small amplitude

maximum shifts to higher temperatures and is suppressed in amplitude in applied field. The

behavior of the low temperature maximum is consistent with what is observed in itinerant
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134

ferromagnets whereas the behavior of the high temperature maximum is consistent with local

moment ferromagnets. This may be expected since GdFe2Zn20 is proposed to be a material

with local moment Gd embedded in a nearly ferromagnetic Fermi liquid.

0 20 40 60 80 100

0.000

0.005

0.010

0.015

0.020

0.025

76 78 80 82 84 86 88 90

-0.0003

0.0000

0.0003

 

 

 (c
gs

)

T (K)

0

0.1

0.2
0.3

0.6
1.2

Pure

 T (K)

 

 
 (c

gs
)

Figure 5.2 Field dependent change in χTDR(T ) for GdFe2Zn20. The inset

is a detail in the vicinity of the phase transition. Numbers

indicate magnetic field in kOe.

5.2.2 Cobalt doping

Figure 5.3 presents the change in χ vs. temperature for five different samples with differing

cobalt concentrations. It is seen that as cobalt concentration increases, the magnetic ordering

temperature decreases. The amplitude of the low T peak in χTDR first increases then decreases

with increasing cobalt concentration. Application of a static magnetic field suppresses the

change in susceptibility for all samples (Fig. 5.4). In some concentrations the application of

magnetic field also uncovers other features. This is most evident in the 50% cobalt doped
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sample where in fields of 0.6–1.1 kOe a well–defined peak in χ is observed in the vicinity of

20 K. Previous TDR rf susceptibility studies on other magnetic materials have shown that

the presence of a well defined peak is indicitative of the onset of local moment ferromagnetic

order [Vannette et al. (2008d), Vannette et al. (2008a), Vannette and Prozorov (2008)]. As the

introduction of cobalt ions into the parent GdFe2Zn20 lattice has been shown to suppress the

itinerant component of the magnetism, the observation of features strongly associated with

local moment magnetic order is not surprising. The sharpness of the peak in the 75% cobalt

doped sample is strongly suggestive of a transition from itinerant to local moment behavior.
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Figure 5.3 Change in the measured susceptibility vs. temperature

for five cobalt concentration ranging from x =0-0.75 in

Gd(FexCo1−x)2Zn20.

The sharp features seen in the 12% and 50% cobalt doped samples show very little tem-

perature dependence on applied field. There is a very slight increase in the temperature of

the peak which is likely due to the change in the FM ordering temperature in applied field.
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Conversely, the sharp feature in χ observed in the 75% doped sample shows a negative tem-

perature dependence on applied field. Published static moment measurements suggest that

the ordering in x = 0.75 Gd(FexCo1−x)2Zn20 is not conventional FM order [Jia et al. (2008)].

5.2.3 Aluminum doping

For comparison, a series of aluminum doped GdFe2Zn20samples was measured. Figure 5.5

presents zero field χTDR vs. T curves for several concentrations of aluminum ions. Ni et al.

(2008) have shown that the magnetic transition temperature is suppressed with increasing

aluminum concentration in a manner similar to the temperature suppression seen in the cobalt

doped case. This will be explored further below.
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Figure 5.5 Magnetic susceptibility vs. temperature for five aluminum con-

centrations ranging from 0-4.9%.

As shown in Fig. 5.6, χTDR vs. T for the lowest aluminum doping studied reveals a small
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dip near T = 40 K. Application of a static field does not change the temperature of this dip

appreciably. However, by applying a field of 0.4 kOe the dip is suppressed. Such a dip in

χTDR is not seen in other aluminum dopings. All other aluminum concentrations studied have

χTDR–T curves similar to pure GdFe2Zn20, the main difference being the magnetic transition is

shifted lower in temperature. The absence of additional features associated with local moment

magnetism suggests that the effect of aluminum doping is not equivalent to that of cobalt

doping. Cobalt substitution directly affects the magnetic sublattice while aluminum doping

only affects the conduction band.
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Figure 5.6 χTDR vs. T in applied DC fields for the four Al doped samples
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5.2.4 Discussion

Figure 5.7 compares published magnetic ordering temperatures for Gd(FexCo1−x)2Zn20 vs. ex-

tra electron per formula unit [Jia et al. (2007)] with temperatures determined by three different

criteria for zero field χTDR data on GdFe2Zn20, Gd(FexCo1−x)2Zn20, and GdFe2(ZnyAl1−y)20.

The lowest temperature is the temperature of the maximum in χTDR for each sample, Tpeak.

The temperature of the maximum negative slope for T > Tpeak defines the slope criterion.

This temperature was determined by a sharp, negative peak in dχTDR/dT . The highest tem-

perature for each sample was determined by an onset criterion, taken as a zero derivative for

T > Tpeak.
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Figure 5.7 Comparison of published ordering temperatures (solid circles)

with temperatures derived from χTDR data using three different

criteria. Onset criteria is determined by a zero derivative in

χTDR(T ) for T greater than T of the large maximum. Slope

criteria is determined by the maximum in dχTDR/dT . Peak

criterion is determined by finding the maximum in χTDR.

For pure GdFe2Zn20 the onset criterion compares favorably with the published TC , with

slope and peak temperatures falling well below 87 K. However, as electron number increases,
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the onset criterion diverges from the published magnetic ordering temperatures in favor of a

maximum slope criterion. At still higher extra electron number published ordering tempera-

tures fall between the slope and peak temperatures. This may be indicative of the crossover

from mixed local/itinerant to strongly local moment magnetism. Choosing the proper ordering

temperature selection criterion is problematic, especially in the absence of data showing strong

features. The TDR data do not provide a clear path to a solution, however, when combined

with other techniques it may provide a means to quantify the degree of itineracy in a mixed

system. More work is needed to understand what useful role the TDR might play in studying

magnetic transitions general.

Complete replacement of cobalt for iron changes the ferromagnetic ordering of the gadolin-

ium moments to antiferromagnetic. Based on the TDR data presented here, it seems that

the transition is not smooth, with the ferromagnetic state persisting to high concentrations of

cobalt. These findings are consistent with static measurements on the same compounds [Jia

et al. (2008)]. While high field, static measurements show that conduction band spin fluctu-

ations are smoothly suppressed with increasing cobalt concentration [Jia et al. (2007)], the

low field, rf data presented here suggest that considerable fluctuations persist up to at least

50% cobalt substitution. This should not be too surprising as there is little reason to suppose

that the low field, dynamic response of material should be equivalent to the high field, static

response.

Based on the evidence provided by rf susceptibility, it seems ferromagnetic order persists

up to at least 75% cobalt substitution and 5% aluminium substitution. This conclusion is

supported by the observed increase in χTDR below the magnetic ordering temperature seen in

all ordered compounds except for GdCo2Zn20. The true nature of the magnetic order of the

gadolinium moments in the compounds Gd(FexCo1−x)2Zn20 and GdFe2(ZnyAl1−y)20 is still

open, however. Neutron scattering would normally be the ideal technique for determining this

conclusively, but the small scattering cross–section for a natural distribution of Gd isotopes

presents a particularly difficult obstacle. It is possible that magnetic x–ray scattering would

provide information regarding how the magnetic structure evolves from ferro– to antiferromag-
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netic with increasing cobalt concnetration. Magnetic x–ray scattering could also allow for a

determination of the magnetic order in GdFe2(ZnyAl1−y)20 as the compound GdFe2Al20 does

not exist.

5.3 Summary

Nine different chemical dopings on the mixed local moment/itinerant ferromagnet GdFe2Zn20 as

well as GdCo2Zn20, YFe2Zn20, and YCo2Zn20 have been studied via rf susceptibility. The ob-

served difference in the measured susceptibilities of YFe2Zn20 and YCo2Zn20 supports previous

conclusions that the Fe containing compound exhibits dramatic Stoner enhancement of the con-

duction band while the Co containing compound does not. The data on GdCo2Zn20 strongly

support the conclusion that this compound orders antiferromagnetically at TN ≈ 5.7 K. Look-

ing across both cobalt and aluminum dopings in GdFe2Zn20, the data show that increasing the

valence electron population decreases the magnetic transition temperature and increases the

change in χTDR through ordering. Whereas the change in ordering temperature is independent

of the nature of the electron doping, dopants which affect the magnetic iron site have a smaller

effect on the change in χTDR than dopants on the non–magnetic zinc site. Whereas previous

high field static results show that the Stoner enhancement of the magnetic susceptibility in the

conduction band is gradually reduced, the low field radio–frequency results show that band

fluctuations in the ordered state persist through at least 75% cobalt doping. These data sug-

gest that the transition from ferromagnetic GdFe2Zn20 to antiferromagnetic GdCo2Zn20 does

not proceed gradually. Rather an abrupt change in magnetic order apparently occurs with

complete replacement of cobalt for iron.



142

CHAPTER 6. Conclusion and Future Directions

Sensitive measurements of the rf susceptibility have been shown to be of use in many areas

in magnetically active samples. Here the TDR has been extended to magnetic systems in

a first attempt at a broad survey of ferromagnetic materials. It has been shown that the

TDR is sensitive to magnetic ordering in ferromagnets as well as antiferromagnets. It also has

been demonstrated that precise measurements of the rf susceptibility distinguish between local

moment and itinerant ferromagnets.

Clearly more work is required to understand the nature of rf susceptibility in magnetically

ordered compounds. As employed here, the TDR might be considered a sensitive inductance

meter, since the changes in resonant frequency of the tank circuit are related to changes

in inductance. It was shown that the changes in L can be related to changes in χ in a

sample. However, it remains unclear what a measure of χ in a magnetically ordered state

actually means. The dynamics of the critical fluctuations associated with the phase transition

should be probed using frequency resolved measurements in addition to studying other, well–

characterized materials. Finally, the physical reason underpinning the observed difference in

χTDR between local moment and itinerant ferromagnets needs to be studied. The model

presented in Ch. 4 represents a first attempt at understanding what might be happening,

and it is by no means definitive. This work focused on measurements of ferromagnets and

lightly touched on antiferromagnets. Other physical phenomena can be explored with this

technique. Preliminary work has been carried out for spin glasses, superparamagnetic powders,

and multiferroic compounds. Studies on materials manifesting other types of phase transitions

will require more work toward understanding what χTDR data truly means.

In the course of this work, the primary technological development to occur for the TDR was
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in increasing the upper bound on the temperature. Such measurements had been performed

prior to this work, but not pursued in any manner, serious or otherwise. There are other

technological developments that may be explored.

The scaling behavior seen in the local moment systems studied here may actually be a

finite frequency effect. The analysis of the peaks in χTDR seen in CeAgSb2, YTiO3 and

GdPtIn (Ch. 3) suggests that for some samples the dynamics of the ordering may occur on the

time scale implied by the tens of MHz regime. The only way to sort this out is to perform the

measurements over 1-1.5 orders of magnitude in frequency. The issues with constructing such

a setup are manifold, however.

First, the condition for resonance is that the impedance of the tank circuit be less than

or equal to the impedance of the tunnel diode. This condition can be met only for a fairly

small range of the product LC. The limitation can be overcome by simultaneously varying the

inductance and the capacitance. The obstacle here is that for stability the components must

be held at a constant temperature and in fairly close proximity to the tank coil to limit noise

introduced by thermal gradients, vibration, etc. in long leads. By extension, the components

must be at low temperature. It is very difficult to adjust both L and C at or near base

temperature without introducing extra heat and noise in the resonance. In the development

of the TDR as an NMR, Aslam and Weyhmann (1973) suggest using varactor diodes. These

are diodes that are designed to have variable capacitance as the voltage drop across them

varies. The drawback noted by Aslam and Weyhmann is that below about 100 K the change

in capacitance of a varactor with applied voltage becomes almost zero. Further, since the

resonant frequency depends on the square root of LC, a small change in f requires a fairly

large change in the tank circuit parameters (one order of magnitude change in f requires two

orders change in LC) . Still, it is possible to construct a set of circuits that span the frequency

range from 1 MHz to 1 GHz in discrete steps. The upper bound on the switching speed for the

tunnel diode is on the order of 5 GHz, and the low GHz range in the TDR has been obtained

by other groups [Martin et al. (2005)]. The major drawback to the array of circuits approach

is that the filling factor for each sample will likely change as the coil size will have to change
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to accommodate the varying capacitor. One might suggest going to differently sized samples

to keep the filling factor constant. What may happen then is in certain materials the smaller

samples may not be skin depth limited while the larger may. Even within the skin depth

limited regime, as the frequency varies, the skin depth varies as well. Again, the variation in

δ is 1/
√

f , so a large change in frequency is required to substantially change the skin depth.

Regardless of the magnitude, it must be remembered that the change would present.

To maintain a constant filling factor, an array of TDR’s, such as that mentioned above,

should have a common tank coil. It is not unreasonable to consider varying the tap coil

inductance (see Appendix A), as it contributes to the resonant frequency. This would allow

the tank coil to remain constant while simultaneously varying the total L keeping the circuit

properly tuned on resonance. This variation in the tap coil inductance must be achieved

without recourse to physically changing the coil. As was shown in Ch. 1, resoldering even one

connection can change the resonant frequency by 5-10%.

A very useful measurement would be to adapt the TDR back to Van Degrift’s setup and

measure ǫ as functions of T,H, and E. The obvious immediate application of such a system is

to the multiferroics (Appendix D) in an attempt to clarify the mutual effect of the coexisting

orders. This could be useful in examining systems that exhibit orbital ordering, as in YTiO3

or Ba2NaOsO6 as well.
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APPENDIX A. Design and Materials Considerations for the TDR

Three different TDRs were used to collect data for this work. The first is mounted on a

closed cycle 3He cryostat with a temperature range from 0.5-100 K operating at a frequency

of 13 MHz. To minimize any drifts in the signal due to varying circuit properties, the circuit

temperature is stabilized at 5 K. The actual temperature to hold the circuit at is not as

important as the fact that the temperature is held stable. The circuit mounting block is

anchored to the helium bath, with a nominal base temperature of 4.2 K. T = 5 K was chosen

for convenience as it requires low heating power output from the temperature controller.

The sample is mounted on a sapphire rod approximately 25 mm long and 1 mm in diameter

with a small amount of Apezion low temperature grease. The opposite end of the sapphire

is mounted in a small copper cylinder (approximately 4 mm in diameter and 10 mm long)

with Stycast 1266 epoxy. Wound around this copper cylinder is a length of doubled over and

twisted nichrome wire (room temperature resistance ≈75 Ω) which acts as a heater. A Cernox

thermometer (Lakeshore SD package) is glued to a flat milled on the heater block between

the heater coil and the sapphire with a thin layer of GE-varnish. The heater block is epoxied

to a macor ceramic rod, which is mounted to a larger copper cylinder. The larger cylinder

makes handling the sample holder easier and provides a place to attach a heat link and feed

wires to the heater and thermometer. Figure A.1 shows the basic design of the sample holder.

The sample end of the sapphire is inserted into the coil of the LC tank circuit. The entire

apparatus (circuit and sample) are placed in a vacuum can that is pumped to a typical pressure

of 10−5-10−6 torr. This pressure is sufficiently low to allow for separate control of the sample

and circuit temperatures. Based on thermal hysteresis runs (ramping sample temperature up

and down), there is little thermal lag between the sample and the thermometer. Comparison



146

of transition temperatures in CeVSb3 [Sefat et al. (2008)], CeAgSb2 [Myers et al. (1999a)], and

GdPtIn [Morosan et al. (2005)] determined from TDR measurements with published values

show that the agreement between the thermometer temperature and the sample temperature

is within the published uncertainty.

Sapphire

Heater

Thermometer

Macor rod

Copper

Cylinder

Figure A.1 Schematic of the basic design of the sample holder. Note this

is not to scale. Heater and thermometry wires feed through

the right end of the copper cylinder.

A major drawback of the 3He system is that the circuit elements, in particular the tunnel

diode, are placed in the magnetic field. This introduces a sizeable field induced background

due to the field dependent properties of the diode. Fortunately, this background is very re-

producible within a single run. Low temperature magnetoresistance of the thermometer can

pose a problem. However, at the low fields and relatively high temperatures here it is safe to

neglect this error. Further, if one can reasonably assume that the only shift in resonance at

high temperatures is due to the circuit itself, then the temperature swept data can be shifted

so that high temperature portions overlap. This may or may not be a reasonable assumption.

It is expected that for the fields of interest in this work (H ≤ 10 kOe, and often H ≤ 2.5 kOe)

this assumption should be valid.

Two other systems were constructed for this work. They were modeled on the 3He system,



147

however it was possible to make certain modifications to permit collection of field swept data

at constant temperature and allow access to higher temperatures. The first new system is

mounted on a 4He cryostat constructed with a low temperature pot, colloquially referred to as

a 1 K pot. Mounted on this 1 K pot is a superconducting magnet and persistent switch as well

as the sample holder and centering rig. The large amount of material anchored to the 1 K pot

limits the practical lower bound on the temperature to 1.7 K. The 4He sample temperature

range of 2-300 K operating at a frequency of 28 MHz. Heat sinking of the leads and coaxial

cables running from the room temperature in this system is less effective than in the 3He

system. The high heat load brought to the circuit from the leads keeps the base temperature

of the circuit at approximately 7 K. Consequently, the circuit temperature is stabilized at 7.5

K. A major difference between the 3He and 4He systems is that the circuit in the former is

mounted below the sample whereas it is above the sample in the latter. There is a coaxial cable

that transmits the rf signal from the tank circuit to the rest of the low temperature elements.

The sample holder in the 4He system is modeled very closely on the 3He sample holder.

The main difference is that the sapphire is approximately 35 mm long and 2 mm in diameter.

This allows for larger samples to be studied, but requires more care in heating the sample.

One way to compensate for the larger overall sapphire mass is to use a larger heater block,

which was employed here. The rationale is that the heat capacity of the heater block needs to

be large enough that the temperature rises slowly enough to keep both ends of the sapphire

in near thermal equilibrium. A check on this condition is to sweep the temperature up and

down through a second order phase transition. If there is significant thermal lag, then there

will be artificial hysteresis in the temperature sweeps. If such hysteresis is present, a slower

temperature ramp rate can be used. Exceptionally high temperatures (T ≥ 250 K) pose

additional problems. Even by ramping up to room temperature over the course of 2 hours

(≈ 2.5 K/min) thermal lag is still observed. Ramping much slower than this is not reasonable

in the 4He system as constructed because the 1K pot on which the sample and superconducting

magnet are mounted is not able to maintain a low enough temperature to prevent the magnet

from transitioning to the normal state. It does not have enough cooling power. This undesirable
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situation results in a loss of magnetic field and a wasted run. Therefore, temperatures near 250

K and higher are to be considered approximate and no quantitative assessment of transition

temperatures should be made. A newer cryostat with similar design was recently purchased,

and it has a larger 1K pot. This new version should provide enough cooling power to keep a

conductively cooled magnet in the superconducting state even while heating the sample up to

and above room temperature. Also, the sample holder could be redesigned to allow for these

higher temperatures.

The long sapphire rod, which is the source of many thermal problems, is needed because a

superconducting magnet was made in house to mount inside the vacuum can for this system.

This allows for the application of magnetic field on the sample while keeping the circuit in a

relatively field–free region. Therefore, the 4He system permits field swept data to be collected.

Further, the 4He system has an in situ extraction mechanism that allows for the removal

of the sample from the coil at base temperature. This permits an estimate of the absolute

value of χTDR. To account for the contribution of the sapphire, empty holder runs including

extraction were conducted. It was assumed that the rf susceptibility of the sapphire rod

combined additively with the sample. Such an estimate is useful in making comparisons of the

band component of the ferromagnetism in cobalt and aluminum doped GdFe2Zn20 presented

herein. This also allows for an estimate of the absolute value of the penetration depth in

superconductors, which is necessary for a determination of the superfluid density [Prozorov

et al. (2000), Prozorov and Giannetta (2006)].

The third system is a high temperature version christened the Inferno. The circuit temper-

ature is allowed to float near room temperature. This system allows access to temperatures as

high as 800 K, and operates at a frequency of approximately 36 MHz. The sample holder is

a single copper rod (100 mm long and 5 mm initial diameter) with one end turned down to a

diameter of approximately 3 mm. A flat surface is milled on one side of the turned diameter.

While the 3He and 4He systems are constructed with a vertical geometry, the high temperature

resonator was set up horizontally. Samples are secured to the stage with sliver paste which is

allowed to cure for two hours at room temperature before heat curing with the sample holder
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itself. Heat is applied through two filaments from 100 W incandescent bulbs wired in parallel

and wrapped around the larger diameter of the copper rod. The heater filaments are secured

with Resbond 940 LE potting compound, a two part silica based adhesive commonly found

sealing the bases of incandescent bulbs. It is rated to 1370◦C, and designed to very nearly

match the thermal expansion of fused silica. Sample temperature is monitored with a platinum

resistance thermometer (Lakeshore PT-103) mounted in groove milled in the copper rod. To

permit changes in the thermometry, should such need arise, the thermometer sits in a copper

sleeve that is attached to the rod with the same potting compound used to attach the heater.

The vacuum chamber for this system is a 30 cm long KF-25 nipple. The coil is mounted in a

hollow drilled out of one end of a 6.35 mm diameter copper rod. Both the coil and the sample

holder are in the vacuum chamber and the circuit is in air.

An obvious improvement to the Inferno would be to actively stabilize the circuit tem-

perature. A passive stabilization is done by gluing the circuit board to an aluminum table

(61×61×2 cm3 top plate). The drift introduced by not stabilizing the circuit temperature is

overwhelmed by the drift caused by the sample holder. For the low temperature versions,

sapphire is used as the sample mounting surface because it is a diamagnetic (in the absence

of impurities) insulator but has high thermal conductivity at low temperature. The thermal

conductivity drops as temperature increases because it is mediated by phonons. Using a metal

allows the thermal conductivity to stay fairly high because it can be mediated by the conduc-

tion electrons. The tradeoff is that the metal shows a changing ac susceptibility due to its

changing resistance. Again, this background signal is largely reproducible. The irreproducible

part likely comes from the thermal cycling of the coil.

The specifics of our systems are summarized in Table A.1. This table repeats the informa-

tion provided in Table 1.2.

Table A.1 TDR Specifics

System Coil Volume (mm3) fres (MHz) Temp. Range (K)
3He 31 14 0.5-100
4He 33 28 2-200

Inferno 250 36 293-800
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Figure A.2 Room temperature electronics for the tunnel diode.

Figure A.2 is a circuit diagram of the biasing supply and a block diagram of the room

temperature electronics used in collecting the TDR data. This is a simplified version of the bias

supply, as it omits an op-amp that may be used to further stabilize the voltage. However, with

such a circuit, it is possible to obtain the highest sensitivity as VanDegrift showed [VanDegrift

(1975b)]. The 10 nF capacitors in conjunction with the 2 kΩ resistors act as low pass filters,

shunting frequencies on the order of 50 kHz and greater to ground. If more stringent ac filtering

is required, a π-filter (an inline inductor with each end capacitively connected to ground) can

be used. A voltmeter can be employed to monitor the bias voltage being applied to the TDR.

The 1 µF capacitor acts as a high pass filter, shunting the rf signal from the low temperature

circuit to an amplifier. The amplified signal is fed into a mixer where it is subtracted from a

fixed local oscillator frequency. The resulting mixed frequency is in the kHz band. This kHz

signal is filtered and amplified before being sent to a counter and an oscilloscope. In principle

the oscilloscope is not necessary, as the information is extracted from the frequency of the

oscillations. What the oscilloscope offers is the chance to observe the waveform and assure
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oneself that there are no or few harmonics mixed into the main signal. The actual instruments

used in these experiments are listed in Table A.2.

Table A.2 Commercial electronics used in this work

Instrument Use Specifications

MITEQ AU-1494 rf Amplifier 1-200 MHz, 58 dB

MiniCircuits ZX05-1-S+ Mixer 0.5-500 MHz input, 7dB drop

Agilent 33250A Local Oscillator 0-80 MHz, 0.01-10 V

SRS 560 Filter & Preamp variable BP filter DC-1 MHz, up to 5 × 104 amplifier

Agilent 53131A Counter up to 225 MHz input frequency

Agilent 54622A Oscilloscope 100 MHz dual channel
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APPENDIX B. Thermal Response of Materials to the rf Probe Field

Introduction

As was stated in Ch. 1, the energy scales associated with the rf excitation field are very small

– both the amplitude and the frequency contributions being ≤ 1 mK in thermal equivalent

units. However, in the cobalt doped GdFe2Zn20 samples it was noticed, quite by accident, that

at base temperature as the magnetic field was swept up, the temperature of the sample dropped

by approximately 100 mK. This temperature shift precisely correlates to the susceptibility of

the sample, as shown in the blue curve of Fig. B.1. This behavior was seen in the aluminum

doped samples as well. From Fig. B.2, where the temperature of an aluminum doped sample

is plotted versus time as the rf field is turned on and off, it is evident that this effect is related

to the presence of the rf excitation field. Given the obvious dependence of sample temperature

on (a) the magnitude of the susceptibility and (b) the presence of the rf excitation field it was

decided to try pin down the specific source of this effect. There are two possibilities.

First, the thermal effect (TE) could be associated with the power dissipated by the shielding

currents induced in the skin-depth layer. Jackson (1998) shows that the time averaged power

per volume associated with this effect is

Pres = µπfH2
0e−2z/δ . (B.1)

H0 is the magnitude of the rf field, f is the frequency of oscillation, µ is the magnetic perme-

ability of the sample, and δ is the skin depth. z represents the depth to which the oscillating

field penetrates the sample. In the case of a long thin rod with the excitation field parallel

to the long axis, the power dissipated per length is proportional to µρf . For a sphere, after

integrating by parts and assuming that the power density dissipated follows the form of Eq. B.1
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throughout predicts that the total power dissipated should be

P T =
1

2
AsH

2
0

√

πρµf. (B.2)

In the above, As is the surface area of the sphere. An important prediction is that the power

dissipated should vary like the square of the amplitude of the rf field and the square root of

the magnetic permeability. As the static field is increased the AC permeability drops, and the

power dissipated drops. If we assume the magnetic permeability is inversely proportional to

the applied field, then the power dissipated should increase in as the field is lowered, so this is

a feasible scenario.

The second possibility is that the remagnetization of the magnetic moments in response to

the rf field has a large decrease in entropy associated with it. The magnetic moments release

this entropy to the lattice, resulting in an effective heating of the sample. As the static field

is increased, the ac susceptibility decreases and the remagnetization process is inhibited. This

leads to a drop in entropy released to the lattice and a decrease in the heating. Invoking this

mechanism requires considerable coupling between the spins and the lattice. It also requires the

spins to have time to relax before the rf field changes direction. Samples with a large magnetic

susceptibility at a given frequency satisfy this requirement. In this scenario the rate of change

of entropy should be directly proportional to the frequency of the rf field, therefore the change

in temperature should also be directly proportional to the frequency. The entropy should also

be directly proportional to the magnitude of the rf field. Finally, the change in entropy (and

power dissipated) should vary like 1/Hstatic. It can be expected that the temperature would

vary like 1/Hstatic as well.

The true test, then, for which mechanism is responsible for the heating is a frequency

resolved measurement coupled with a varying rf amplitude. A slightly simpler test is to take a

metal with no magnetic order and turn the rf excitation on and off to see if there is an effect on

the temperature. Further, an insulating ferromagnet with a field dependent susceptibility will

allow one to discriminate if the magnetic moments do play a direct role in the observed TE or

if the effect seen in the doped GdFe2Zn20 samples is due only to the effect of the permeability

on the skin depth.
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Figure B.1 Magnetic field (solid line, left axis), sample temperature (filled

circles, right axis), and magnetic susceptibility (half-filled pen-

tagons, far right axis) vs. time for Gd(Fe0.5Co0.5)2Zn20. The

correlation between the sample temperature and susceptibility

is clear. Vertical bars near 1250 seconds denote the time period

where the field was held at a non-zero, constant value.
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Figure B.2 Sample temperature (left axis, solid symbols) and TDR tem-

perature (right axis, open symobls) vs. time for 1% Al doping

in GdFe2Zn20. Initially the rf excitation field was off. At ap-

proximately 1 minute the circuit was set resonating and the

temperature was allowed to reach a steady state. The rf field

was turned off again at 4 minutes, and the temperature relaxed

to the time=0 value.
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Regardless of the source of the power (whether magneto-caloric or skin depth heating), the

data on the doped GdFe2Zn20 systems demonstrate that the magnetic permeability is a key

player. Further, for the TE to be observable the material must have a low heat capacity, C.

If C is large then the extra heat deposited into the system will go to changing the entropy

rather than the temperature. Therefore, the effect should not be visible at higher tempera-

tures. Another consideration is the proximity to a second order phase change. If the sample in

question undergoes a para- to ferromagnetic phase change close to the measurement temper-

ature, the heat capacity of the sample will be large and the magnitude of the TE is expected

to be small. The final consideration is the size of the sample relative to the sample holder. If

the sample is small it may not generate enough heat to measurably affect the sapphire and

heater block used in this experiment. In this sense, a better way to perform the experiment is

to mount the sample directly to a thermally isolated thermometer and then apply the rf and

static fields. Still, it is evident that the TE discussed herein is measurable in some materials

with the current equipment.

Experimental Details

Six materials were chosen for this experiment in an attempt to unambiguously identify

the source of the TE: GdFe2(Zn0.979Al0.021)20, CeVSb3, YTiO3, GdPtIn, YFe2Zn20 and Cu.

The first is seen to have a large and strongly field dependent χ at low temperatures. Fur-

ther, it is believed to have a band magnetism component. CeVSb3 is a metallic local moment

ferromagnet with almost zero low temperature field dependence in χ. Field dependent χ mea-

surements suggest there is an aspect of the magnetism with considerable fluctuation. YTiO3

is an insulating ferromagnet, but due to orbital ordering, the susceptibility remains large at

low temperatures. It also has a similar field dependence in χ when compared to an itiner-

ant compound for low temperatures. If the TE is related to the remagnetization, then the

YTiO3 might be expected to show it as well. If, however, it is only related to the joule heating

from the shielding currents the Cu sample will show the effect. GdPtIn is a local moment

ferromagnet, and the field dependent data suggests that it is pure local with little or no band
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enhancement. YFe2Zn20 is the non-magnetically ordered parent compound of GdFe2Zn20. It

exhibits a large Stoner enhancement of its conduction band as discussed in Ch. 5. All samples

were approximately 0.75 mm3 in volume. With the exception of copper, all samples were single

crystals. The copper sample was cut with a shear from a plate purchased from McMaster-Carr.

This original purpose of the plate was to build a stage on which the 4He circuit was mounted.

The cut piece of copper was washed in ethanol and acetone separately to remove any residual

grease and/or oil from the cutting process. After a rinse in distilled water, the sample was

etched with a 1:1 mixture of nitric acid and distilled water three times in an attempt to remove

any surface impurities resulting from the cutting. After each etching, the sample was washed

throughly in distilled water. When magnetic order was present, the magnetic easy axis was

aligned with the rf field.

Results and Discussion

The TE observed in the doped GdFe2Zn20 is not seen in any serious or conclusive way in

Cu, YTiO3, or GdPtIn. (Figs. B.3, B.4, and B.5). Based solely on the energy considerations

from Ch. 1 the size of the temperature shift seen in Cu is consistent with expectations given

the relatively low permeability expected for this material. Further, the weak effect seen in the

YTiO3 suggests that the TE is not just from remagnetization processes. This is a much weaker

conclusion, though, because it is difficult to estimate the absolute value of the moment change

from the rf field due to a lack of knowledge of the precise value of the rf amplitude. However,

this amplitude, and the subsequent moment change, should be quite small.

That the effect is not connected with magnetic order is evident from YFe2Zn20. The

heating effect is seen quite obviously in Fig. B.6. Cycling the rf field on and off induces a 20

mK temperature change. This is somewhat smaller than that seen in the doped GdFe2Zn20,

however it is substantially larger than what is seen in either Cu, YTiO3 and GdPtIn.

The results of CeVSb3 are more interesting. Even though the compound exhibits strong

local moment behavior and the low temperature susceptibility is not strongly field dependent,

the effect on temperature of the rf field is obvious. This suggests that the TE discussed herein
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Figure B.3 Circuit, 1-K pot, and sample temperature vs. time for a copper

sample as the rf excitation field was cycled on and off. At

time=0 the rf field was on. From a-e the rf field cycled between

on, off, on, off, and on. Initial tests suggested the effect was

small, so to mitigate any possible change in heat load due to the

changing power dissipated in the circuit itself, the bias voltage

on the diode was change very slowly.
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even with the heat pulse from rapidly changing the bias on the

circuit.
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Figure B.5 Temperatures of GdPtIn (left axis, solid squares) and the cir-

cuit (right axis, open circles) vs. time as the bias voltage was

increased. At the time marked ‘a’ the circuit began resonating.

At ‘b’ the resonance switched off due to overbiasing.
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is due to the presence of ferromagnetic order in a metal.
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Figure B.7 Sample temperature for a 1 mm3 single crystal of CeVSb3 vs.

time as the bias voltage is adjusted. The arrows labeled 1 and

2 are for increasing and decreasing bias voltages, respectively.

The rf field was off at time=0.

Figure B.7 presents the temperature of the sample versus time as the bias voltage is ad-

justed. Initially the rf field was off due to under biasing the circuit. The peak at ‘a’ indicates

the resonance turned on. The bias was then reduced to bring it to a minimum value. Biasing

was increased in approximately 100 mV steps until the resonance turned off at the negative

peak ‘b.’ A frequency dependent measurement was attempted for this material over a very

narrow window. By changing the bias voltage on the tunnel diode it is possible to change the

resonant frequency by a small amount. Even with this small change in f , there is a correlation

between f and ∆T , as shown in Fig. B.8. It is not strictly linear in f nor is it even monotonic.

Such non-monoticity can be accounted for by realizing that as the bias point moves along the
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I − V curve (Fig. 1.2) the amplitude of the rf field also changes. The rf amplitude might be

expected to be very nearly constant over most of the range of suitable bias values. At the

extremes the absolute value of the slope of the I −V curve decreases. If the voltage oscillation

about the bias point is of fixed amplitude for all bias points, then for lower slopes a smaller

∆I results. It is this change in the passed current that accounts for the amplitude of the radio

frequency field. Therefore, at the extreme bias voltages, the amplitude of the rf field may be

expected to decrease. Through the middle of the bias voltages, though, one is tempted to

assume the rf field maintains a fixed peak to peak amplitude.
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Figure B.8 Sample temperature vs. resonant frequency for CeVSb3. The

arrow indicates the direction of decreasing bias voltage.

However, this appears not to be the case. The sample temperature is directly proportional

to the bias voltage, only becoming non-monotonic at the highest bias values (Fig. B.9). These

points on the temperature downturn correspond to resonances that were especially unstable,

changing as much as 500 Hz in a matter of seconds, a consequence of being marginally biased.

It might be argued that since the bias voltage is increasing more power is being dissipated in

the other circuit elements as well as the coil itself. This argument is laid to rest by noting that
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once the resonance is shifted off, either by over or under biasing, the temperature of the sample

drops (Fig. B.7). Referring to Fig. 1.2, the curvature of the TD I − V plot is much greater

near the peak current when compared to the valley at higher bias voltages. This can account

for the continued monotonic behavior down to the lowest resonating biases as the crossover

from negative to positive slope occurs over a much smaller voltage window.
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Figure B.9 Sample temperature (left axis, filled circles) and resonant fre-

quency (right axis, hollow squares) vs. bias voltage for CeVSb3.

The lower and upper voltage points denote the resonance win-

dow.

Conclusions

Magnetically soft, highly permeable metals show a pronounced thermal effect in response

to an rf field. The ferromagnetic insulator YTiO3 does not manifest this effect even though it

is a highly polarizable material at low temperatures. This effect is due to the Joule heating

from the screening of the rf field by the conduction band electrons. A comparison of the

heat dissipated in copper and YFe2Zn20 as the rf field is cycled on and off shows that the
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conduction band must have a high polarizability for the effect to be observable. Given the

very small amplitude of the rf field (≤ 6 mOe, estimated) the polarizability requirement is not

too surprising.

All these observations taken together suggest that for the rf heating to be manifest in

the TDR measurements the conduction band electrons must have a fairly large polarizability.

These data suggest that CeVSb3 has a highly polarizable conduction band, even though the

magnetism is strongly localized on the cerium sites. In a manner similar to the cobalt and

aluminum doped GdFe2Zn20 the conduction band may be polarizable in low fields, but show

saturation in somewhat larger fields. Therefore, static measurements may mask the low field,

dynamic response of the materials under consideration. Even though the measured Stoner

enhancement is low, the materials are still dynamically very active for sufficiently low H.

Given the requirement of passive heating to observe this effect coupled with the varying heat

link and base temperature from run to run, it is difficult to make any systematic comparison

between different samples. Still, the fortuitous discovery of the rf heating may offer another

avenue to explore the nature of the differences between band and local moment magnetism. An

experimental system optimized to passively heat the sample to a certain temperature would

allow for a better estimate of the power dissipated in a given sample. From a series of such

measurements on differently sized samples it may be possible to determine the amplitude of

the rf field which would allow for a second method to determine the magnetic permeability in

a sample. Such a study would be very valuable for determining how band magnetism behaves.
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APPENDIX C. Shubnikov-de Haas Oscillations in Ce- & SmAgSb2

Measurements of quantum oscillations in the resistivity, Shubnikov-de Haas (SdH) oscilla-

tions, are among the primary techniques to study the geometry of the Fermi surface in metals.

Electron transport depends on the density of states and the scattering rates. The density

of states is modulated by the Landau quantization. Within the standard theory [Shoenberg

(1984)] for a three-dimensional Fermi surface the amplitude of the rth harmonic oscillatory

part of the resistivity is given by

αr ∝ mcSextrB
1/2

|S′′|1/2
extr

RT (r)RD(r)RS(r) (C.1)

where mc is the cyclotron mass, Sextr is the extremal cross section of the Fermi surface (FS)

perpendicular to the applied field, |S′′|extr = (∂2S/∂p2
B)extr is a measure of the FS curvature

along B at the extremal cross section, and the damping factors RT , RD, and RS are caused

by finite temperature, scattering, and Zeeman splitting respectively. The corresponding fun-

damental frequency is

f =
Sextr

he
. (C.2)

Such oscillations are generally difficult to measure in three-dimensional metals, especially if

the metal is highly conducting. Conventional four–probe resistivity measurements on a highly

conducting metal require relatively high currents to generate measurable voltages. If contact

resistance, i. e. the resistance across the joint connecting the current lead wires to sample, is

large, the increased current will lead to sample heating. The problem is exacerbated for small

crystals where attaching contacts is not an easy task. Further issues arise in materials with a

small cyclotron mass, giving rise to a reduced amplitude of the SdH signal. The TDR allows

for a contactless measurement of the resistivity and changes therein by probing the skin depth

(Eqs. 1.1 and 1.17).
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In large magnetic fields far from any possible ordering effects, where µ ≈ 1, the magnitude

of the skin depth at 13 MHz can be estimated by

δ[µm] = 15
√

ρ[µΩ cm]. (C.3)

For crystals with a typical size R = 500 µm, the upper limit of the resistivity that the TDR

used here can probe can be estimated by equating δ = R. This gives ρmax ≈ 1000 µΩ cm.

The lower bound on resistivity is reached when the skin depth becomes smaller than the mean

free path, l, and the local Ohm’s law is no longer valid. This is the anomalous skin effect. An

estimate on this lower bound can be made using a Drude approximation where l is given by

l =
(3π2)1/3h̄

n2/3e2ρ
. (C.4)

n is the electron density and e is the electron charge. Combining equations 1.1 and C.4 one

obtains

ρmin =

(

µfπ7/332/3h̄2

n4/3e4

)1/3

≈ 8.6 × (µf)1/3

n4/9
. (C.5)

For a typical nonmagnetic metal with n = 5 × 1028 m−3 and f = 107 Hz, ρmin ≈ 0.03 µΩ

cm. Therefore, a direct quantitative study of the contactless resistivity in small crystals in

the range 0.03-1000 µΩ cm is possible. This range covers most metallic materials of interest.

In the regime of a highly conducting metal, the measured susceptibility is expressed by the

linearized form of Eq. 1.17,

4πχTDR =
µδ

2R
− 1. (C.6)

Agreement between the resistivity in SmAgSb2 derived from skin depth and that measured

via a direct 4-probe technique is very good, as seen in Fig. C.1. Under the assumption that

µ = constant, Eq. 1.17 can be recast as

4πχTDR = G
√

ρ − 1. (C.7)

For this experiment the constant G was determined by comparing χTDR at two temperatures

(T1 ≈ 0.5 K and T2 ≈ 12 K) with ρ determined from conventional measurements. A single G

was then used to convert the TDR data to resistivity. This procedure was employed because

the 3He system did not have an extraction mechanism when these data were collected.



168

0 6 12 18 240.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 500

10

20

30

 from skin depth
 direct transport

 (
cm

)

T (K)

 

 

 T (K)

 (
m

)
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from skin depth (solid line) and 4–probe (hollow circles) in
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Presented here is field dependent data at different temperatures from slab shaped samples

of Ce- and SmAgSb2. Both crystals are tetragonal intermetallic compounds. CeAgSb2 orders

ferromagnetically at 9.8 K, whereas SmAgSb2 orders antiferromagnetic ordering at 9.5 K.

These materials, along with the other rare earth members of the family, has been studied

before [Brylak et al. (1995), Sologub et al. (1995), Myers et al. (1999b), Myers et al. (1999a),

Jobiliong et al. (2005)]. Direct measurements of SdH oscillations have been reported previously

[Myers et al. (1999a)].

The technique is best suited to measurements of changes in χTDR, and by extension ρ.

Observation of SdH oscillations is still sensitive to the residual resistivity in that if there is sig-

nificant scattering in the sample, then the quantum oscillations will be suppressed. However, in

terms of measuring small changes in ρ which are less than a few percent of the background, the

TDR possesses another advantage, illustrated here. The amplitude of the measured resistivity

oscillations is on the order of a few nΩ cm (see Fig. C.3), whereas the absolute value of the

background resistivity is on the order of 100’s of nΩ cm (as determined by conventional 4-probe

transport measurements). Resolving changes on the order of 1% or less of the background sig-

nal can be difficult using normal techniques. This is especially evident as the temperature of

the samarium sample is raised. Thermal scattering decreases the amplitude of the oscillations

(Eq. C.1). This is coupled with an increase in the resistivity of the sample. The net result is

a greatly diminished signal to noise ratio. However, the TDR measurement detects high field

oscillations up to 9.5 K.

The power spectra obtained from a Fourier transform of the oscillations is relatively simple

for the cerium compound with only one major frequency evident. Conversely, the samarium

compound exhibits many frequencies associated with the extremal Fermi surfaces as seen in

Fig. C.5. The main peaks are identified by the Greek letters α, β, and γ′. The orbit identified

as γ′ was first observed with the TDR. These results agree with Myers et al. (1999a) and

detect the new orbit. This serves to further demonstrate the utility of the TDR in the study

of metallic samples.
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APPENDIX D. Multiferroic Compounds

Introduction

Recent years have seen a resurgence in the interest in magnetoelectric multiferroics (ma-

terials exhibiting simultaneous magnetic order and electric polarization) [Spaldin and Fiebig

(2005)]. The possibility of controlling the magnetic subsystem via an electric field or vice versa

could have significant implications for the field of information storage. Candidate materials

that conclusively exhibit these properties are few in number, making detailed study of the

physics involved rather difficult. One family of materials that is high on the list of potentials

is the hexagonal rare earth system RMnO3 (R=Ho-Yb).

The full rare earth series exists in either a hexagonal or an orthorhombic structure de-

pending on the pressure and/or rare earth ion. The heavier, smaller rare earths (Ho-Lu) along

with yttrium favor the hexagonal phase while the lighter and larger (La-Tb) tend toward the

orthorhombic phase [Yakel et al. (1963)]. Normally, symmetry conditions would prevent the

hexagonal phase from showing a linear magnetoelectric effect (ME), wherein an electric (mag-

netic) field can control the magnetic (electrical) properties of the system [Lottermoser et al.

(2004)], however it has been demonstrated that hexagonal HoMnO3 shows evidence of strong

magnetodielectric coupling [Yen et al. (2005)].

An interesting aspect of HoMnO3 is its rich H − T phase diagram [Fiebig et al. (2002b)

Lorenz et al. (2005)]. Frustration in the Mn sublattice has been cited as one reason for this

richness. Fiebig et al. (2002b) claim that the other hexagonal RMnO3 compounds with par-

tially filled 4f shells exhibit phase diagrams comparable to HoMnO3 as determined from second

harmonic generation. That there are multiple phase transitions is presented by Fiebig et al.

(2002a) and Fiebig et al. (2003). However, published magnetization, magnetic susceptibility,
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and dielectric constant data [Yen et al. (2005)] seem to contradict this statement . It may be

that the latter measurements lacked sufficient sensitivity to detect the phase changes. Fiebig

et al. (2002a) label one of the phase transitions in ErMnO3 as “hidden,” hinting at its aversion

to detection. It has been speculated that the large Ho3+ moment better couples to the Mn3+

moments and may thus provide some explanation for the differences in diagram complexity

and detectability of the transitions [Fiebig et al. (2002b)].

Unlike the other hexagonal members of this family, DyMnO3 has received little attention.

This member is usually encountered in the orthorhombic structure, but it can also be synthe-

sized in the hexagonal [Kamegashira et al. (2004), Ivanov et al. (2006)]. Dy3+ with an even

larger free ion moment than Ho3+ may be expected to manifest properties similar to holmium

if the coupling between the Mn-3d4 and R − 4fn, where n represents the filling of the f shell,

moments is driven mainly by the size of the moment. The H − T phase diagram for the or-

thorhombic structure has been mapped [Kimura et al. (2005)], and the properties extensively

studied [Goto et al. (2004), Laverdière et al. (2006), Feyerherm et al. (2006), Prokhnenko et al.

(2007)]. Therefore, the dysprosium compound offers a stage on which the effects of structural

differences and rare earth moment size on the magnetic order and any ME can be explored.

Single crystal samples of hexagonal Dy- and HoMnO3 were grown via a floating zone method

[Ivanov et al. (2006)]. Samples were first cut into plates with a wire saw and orientation was

verified via Laue diffraction. From the oriented plates smaller pieces were cut with a blade

for the resonator samples. The holmium sample was a planar right triangle with dimensions

of 0.7×0.7×0.06 mm3 while the dysprosium sample was a rectangular plate with dimensions

of 1×0.75×0.3 mm3. The smaller sample was mounted on one end of a 20 mm long by 1

mm diameter sapphire rod with low temperature grease. The opposite end of the sapphire was

secured in a copper heater block where temperature was monitored with a negative temperature

coefficient resistance thermometer. Sample and sapphire were then inserted into the coil of

the LC tank circuit of the TDR mounted on a 3He cryostat. The entire low temperature

part of the setup was enclosed in a vacuum can permitting independent control of the circuit

and sample temperatures. The cryostat was placed in the bore of a superconducting magnet.
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The static bias and rf excitation fields both were aligned parallel to the c-axis. All data was

collected as temperature sweeps in constant field.

Phase Diagrams for Hexagonal HoMnO3 and DyMnO3
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Figure D.1 AC susceptibility of HoMnO3 measured parallel to the c-axis

in different static magnetic fields. Curves are offset for clarity.

Figure D.1 presents the magnetic susceptibility versus temperature for HoMnO3 in four

applied static fields. The zero field curve shows an obvious phase change near 4.5 K and a

weaker feature near 40 K. Application of a modest field (2.5 kOe) does not appreciably change

the temperature dependent susceptibility. As the static field is further increased, more features

of different types become evident. Each feature is associated with a change in the magnetic

order of either the holmium or manganese spins or both.

Previous works have used an onset criterion for delineating phase boundaries in this material

[Lorenz et al. (2005), Yen et al. (2005)]. Here a different set of criteria is used, as illustrated

in Fig. D.2. When a well-defined peak is present, the temperature of that peak is taken as

the critical temperature for the phase transition (T4). In the absence of an obvious peak,
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Figure D.2 35 kOe temperature sweep for HoMnO3 along the c-axis with

features associated with phase changes marked by T1 − T5.

linear extrapolation of the χ − T curves on either side of the transition is done (T1 − T3).

The intersection of these extrapolated curves is taken as the critical temperature. Inflection

points marking a change from an increasing to a decreasing slope (T5) are also identified as

being associated with changes in magnetic structure. The difference between these two sets of

criteria do not affect the conclusions of this work.

Figure D.3 is the H−T phase diagram for HoMnO3 as determined via TDR measurements.

For comparison the phase diagrams from Lorenz et al. (2005) and Yen et al. (2005) have been

digitized and added. Figure D.4 is an expanded view of the low temperature region of Fig.

D.3. The similarities between the TDR phase diagram and the published versions is striking.

The difference in the high temperature lines is ascribed to differences in sample quality. What

is intriguing about the low temperature region is that certain magnetic susceptibility points

detected by the TDR more closely correspond to anomalies previously detected via dielectric

constant measurements (bowties in Figs. D.3 and D.4). To be sure, not every feature seen via

dielectric measurements is present in the TDR, but that may be due to selection criteria. It is
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circles are phase changes detected with the TDR. Open red

triangles are defined phase transitions digitized from Lorenz

et al. (2005). Blue bowties are anomalies in dielectric constant

digitized from Yen et al. (2005). Lines are guides to the eye,

and labeled phases follow the convention of Lorenz et al. (2005).



179

1086420

T (K)

50

40

30

20

10

0

H
 (

k
O

e)

HT2

HT1

INT
LT1

LT2

HoMnO3

 Hexc || c

Figure D.4 Low temperature detail of the phase diagram show in Fig. D.3.

evident, though, that the TDR is quite capable of detecting the many phase changes seen in

HoMnO3.

Fig. D.5 presents the H − T phase diagram from HoMnO3 with the static and rf fields

applied in the basal plane. No intermediate phase transition is observed as for the c axis

data. The high temperature transition evolve with field in a manner quite different from

the perpendicular orientation, however comparison with Fig. D.7 shows that there are some

similarities between DyMnO3 and HoMnO3 phase diagrams.

Fig. D.6 presents χ versus T data for hexagonal DyMnO3 in five applied static fields. The

zero field similarity between the dysprosium compound and the holmium analogue is obvious.

The features in the Dy system are more subtle, however they can be picked out. As the static

field increases more phase transitions are revealed. Using the same criteria as was used for

the holmium, the phase diagram for hexagonal DyMnO3 was created and is presented in Fig.

D.7. The only previously published line [Ivanov et al. (2006)] is marked with open triangles.

Dotted lines are through points that show a weak local maximum and may be associated with
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a gradual reorientation of the magnetic moments rather than an abrupt phase change. This

argument was put forth to explain similar soft features seen in HoMnO3 [Yen et al. (2007)].
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Figure D.7 Phase diagram for hexagonal DyMnO3. Filled black circles

are TDR data and open red triangles are from Ivanov et al.

(2006). Phases ITP and LTP are named following Nandi et al.

(2008). Phases HT1 and INT are labeled as such under the

assumption that they are similar to the other hexagonal rare

earth manganites.

Interpretation of the Results

Interpretation of the TDR data in magnetically ordered samples is subtle. It is known

that for local moment ferromagnets at the Curie temperature, zero field χ goes through a

very narrow maximum provided the magnetic easy axis coincides with the rf coil axis. It is

also known that magnetocrystalline anisotropy manifests at TC as a decrease in the growth

of χ through TC when measured perpendicular to the easy axis as compared with parallel

(see Ch. 2). Further, in antiferromagnetic metals [Prozorov et al. (2006)] no maximum in χ

is seen at the Nèel temperature, TN , when the ordering axis is aligned with the rf coil axis.
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This can be understood once the amplitude of the rf field is considered. Such a small field

is not able to overcome the AFM exchange interaction. If a given moment responds to the

probe field, the magnetic coupling between it and its neighbors leads to a compensation of the

induced moment. Therefore, there is no bulk change in the magnetization of the sample and

the measured susceptibility shows no large response. This may be considered some zero field

limit of the low temperature behavior of χ||. The situation in metals is further complicated

by the fact that a magnetic field in the rf is screened from the bulk of the metal, thereby

reducing the effective sample volume probed. Therefore, it is unclear what sort of response

to expect from an antiferromagnetically ordered sample probed perpendicular to the ordering

axis. Fortunately for the current work the rf screening is not a problem.

The magnetic symmetries of many of the phases of HoMnO3 have been determined via

second harmonic generation experiments [Fiebig et al. (2002b)]. For the hexagonal rare earth

manganites the rare earth ions occupy two distinct lattice sites within the P63cm space group

(2a and 4b) [Kamegashira et al. (2004)]. Each site may order differently from the other,

depending on the temperature and field. Referring to Fig. D.3, phase HT1 has been identified

as P63cm wherein the 2a Ho ions are free and the 4b ions exhibit AFM order along the c-axis.

In HT2, all rare earth spins are in an AFM structure still aligned with the c axis. The phase

labeled INT has been identified as P63 where all the spins are antiferromagnetically aligned in

the basal plane Yen et al. (2007). Phase LT2 has been identified as P63cm with all rare earth

moments ordered parallel to the c axis [Yen et al. (2007)]. The magnetic structure of phase

LT1 has not been identified.

With the previously published magnetic symmetries at hand, we can begin to understand

the TDR data. Referring to Fig. D.2, between temperatures T1 and T2 there is an obvious

enhancement of the c axis susceptibility. This is also the INT phase. On either side the

moments order aligned parallel to the c axis. With the moments ordering in the basal plane,

as occurs in INT, the rf field is inducing a coherent deflection, and hence a larger susceptibility

results. At T3 the system reenters the INT phase and at T4 there is a return to c axis ordering

in the phase HT1. Down to T4 the transitions are superimposed on a Curie-like background.
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For temperatures less than T4, however, there is a rapid decrease in χ. This would normally

be associated with a fully ordered system. Based on the magnetic symmetry of the HT1 phase

(which is presumed to exist in this region) there should be two free Ho moments. Normally these

two spins would contribute significantly to χ. What can be inferred is that the impending full

ordering of moments at T5 leads to a slowing of the response of the free moments via exchange

interactions.

Recent XRMS work on hexagonal DyMnO3 has allowed the phases labeled ITP and LTP in

Fig. D.7 have been assigned the magnetic symmetries of P63cm and P63cm respectively [Nandi

et al. (2008)]. The TDR data agrees with the XRMS data in the sense that both compounds

exhibit similar features in χ on crossing similar phase boundaries. The phase changes seen

in the Dy compound are much more subtle than those from the Ho. This suggests that the

moment size is not as critical in determining the interaction between the rare earth ion and

the underlying lattice. Phase C has been identified in Er- and YbMnO3. In both of those

compounds, as well as in the Ho version, this phase has the magnetic symmetry P63cm. In

both the Er and Yb compounds the C phase is stable up to fields of approximately 0.5 kOe

while in the Ho it exists all the way up to 10 kOe. If the Dy C phase has the same symmetry

as the other members, then the low T , low H behavior is closer to Ho than Er or Yb. The

transitions from INT to LTP and A to B are associated with weak maxima in χ. These may

be more evident in dielectric measurements. The well defined phases observed in DyMnO3 are

qualitatively similar to the other RMnO3 [Yen et al. (2007)].



184

BIBLIOGRAPHY

Ashcroft, N. W. and Mermin, N. D. (1976). Solid State Physics. W. B. Saunders.

Aslam, J. and Weyhmann, W. (1973). A tunnel diode NMR spectrometer. Rev. Sci. Inst.,

44(1):71.

Bartholin, H., Florence, D., Tcheng-Si, W., and Vogt, O. (1975). Magnetic properties of CeSb.

Phys. Stat. Solidi (a), 29:275.

Blundell, S. (2001). Magnetism in Condensed Matter. Oxford University Press.

Borca, C. N., Komesu, T., Jeong, H.-K., Dowben, P. A., Ristoiu, D., Hordequin, C., Nozières,

J. P., Pierre, J., Stadler, S., and Idzerda, Y. U. (2001). Evidence for temperature dependent

moments ordering in ferromagnetic nimnsb (100). Phys. Rev. B, 64:052409.

Boucherle, J. X., Givord, F., Lapertot, G., noz, A. M., and Schweizer, J. (1995). The magnetic

structures of Ce3Al11: a single crystal study. J. Mag. Mag. Mat, 148:397–408.

Brylak, M., Moeller, M. H., and Jeitschko, W. (1995). Ternary arsenides ACuAs2 and ternary

antimonides AAgSb2 (A=rare-earth elements and uranium) with HfCuSi2-type structure.

J. Solid State Chem., 115:305.

Clover, R. B. and Wolf, W. P. (1970). Magnetic susceptibility measurements with a tunnel

diode oscillator. Rev. Sci. Inst., 41(5):617.

Coffey, T., Bayindir, Z., DeCarolis, J. F., Bennett, M., Esper, G., and Agosta, C. C. (2000).

Measuring radio frequency properties of materials in pulsed magnetic fields with a tunnel

diode oscillator. Rev. Sci. Inst., 71(12):4800.



185

de Groot, R. A., Mueller, F. M., van Engen, P. G., and Buschow, K. H. J. (1983). New class

of materials: Half-metallic ferromagnets. Phys. Rev. Lett., 50(25):2024.

Drobac, D. (1996). Critical exponents from high-precision AC susceptibility data. J. Magn.

Magn. Mat., 159:159–165.

Engelhardt, L., Gass, I. A., Milos, C. J., Brechin, E. K., Murrie, M., Prozorov, R., Vannette,

M. D., and Luban, M. (2007). Heisenberg model of an [Fe8]-cubane cluster. Phys. Rev. B,

76:172406.

Esaki, L. (1976). Discovery of the tunnel diode. IEEE Trans. Elec. Dev., ED-23:644.

Escorne, M., Mauger, A., Ravot, D., and Achard, J. C. (1981). Transport properties of CeSb.

J. Phys. C: Solid State Phys., 14:1821.

Feyerherm, R., Dudzik, E., Aliouane, N., and Argyriou, D. N. (2006). Commensurate

Dy mangetic ordering associated with incommensurate lattice distortion in multiferroic

DyMnO3. Phys. Rev. B, 73:180401(R).

Fiebig, M., Degenhardt, C., and Pisarev, R. V. (2002a). Interaction of frustrated magnetic

sublattices in ErMnO3. Phys. Rev. Lett., 88:027203.

Fiebig, M., Degenhardt, C., and Pisarev, R. V. (2002b). Magnetic phase diagram of HoMnO3.

J. App. Phys., 91:8867.

Fiebig, M., Lottermoser, T., and Pisarev, R. V. (2003). Spin-rotation phenomena and magnetic

phase diagrams of hexagonal RMnO3. J. App. Phys., 93:8194.

Fisher, M. E. (1967). The theory of equilibrium critical phenomena. Rep. Prog. Phys.,

30(2):615–730.

Fox, J. N. and Trefay, J. U. (1975). Experiments using a tunnel diode oscillator. Am. J. Phys.,

43(7):622–625.

Garrett, J. D., Greedan, J. E., and MacLean, D. A. (1981). Crystal growth and magnetic

anisotropy of YTiO3. Mat. Res. Bull., 16:145–148.



186

Gordon, R. T., Ni, N., Martin, C., Tanatar, M. A., Vannette, M. D., Kim, H., Samolyuk,

G., Schmalian, J., Nandi, S., Kreyssig, A., Goldman, A. I., Yan, J. Q., Bud’ko, S. L.,

Canfield, P. C., and Prozorov, R. (2008a). Unconventional London penetration depth in

Ba(Fe0.93Co0.07)2As2 single crystals. submitted. preprint available at arXiv:0810.2295.

Gordon, R. T., Vannette, M. D., T., and Prozorov, R. (2008b). Itinerant magnetism and

superconductivity in Y9Co7. in progress.

Goto, T., Kimura, T., Lawes, G., Ramirez, A. P., and Tokura, Y. (2004). Ferroelectricity and

giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett., 92:257201.

Habbal, F., Watson, G. E., and Elliston, P. R. (1975). Simple cryostat for measuring rf

susceptibility from 4.2 to 300 K. Rev. Sci. Inst., 46(2):192–195.

Ho, S. C., Maartense, I., and Williams, G. (1981). AC susceptibility and resistivity of the

ferromagnetic phase of PdMn. J. Phys. F, 11:699–710.

Ivanov, V. Y., Mukhin, A. A., Prokhorov, A. S., Balbashov, A. M., and Iskhakova, L. D.

(2006). Magnetic properties and phase transitions in hexagonal DyMnO3 single crystals.

Phys. Solid State, 48:1726.

Jackson, J. D. (1998). Classical Electrodynamics. John Wiley & Sons, Inc.

Jia, S. (2008). Magnetic properties of RT2Zn20, R = rare earth, T = Fe, Co , Ru, Rh , Os

and Ir. PhD dissertation, Iowa State University.

Jia, S., Bud’ko, S. L., Samolyuk, G. D., and Canfield, P. C. (2007). Nearly ferromagnetic

fermi-liquid behaviour in YFe2Zn20 and high-temperature ferromagnetism of GdFe2Zn20.

Nature Physics, 3:334–338.

Jia, S., Ni, N., Samolyuk, G. D., Sefat, A. S., Dennis, K., Ko, H., Miller, G. J., Bud’ko,

S. L., and Canfield, P. C. (2008). Variation of the magnetic ordering in GdT 2Zn20 (T=Fe,

Ru, Os, Co, Rh, and Ir) and its correlation with the electronic structure of isostructural

YT 2Zn20. Phys. Rev. B, 77:104408.



187

Jobiliong, E., Brooks, J. S., Choi, E. S., Lee, H., and Fisk, Z. (2005). Magnetization

and electrical-transport investigaion of the dense kondo system CeAgSb2. Phys. Rev. B,

72:104428.

Kadanoff, L. P., Gotze, W., Hamblen, D., Hecht, R., Lewis, E. A. S., Palciauskas, V. V., Rayl,

M., Swift, J., Aspenes, D., and Kane, J. (1967). Static phenomena near critical points:

Theory and experiment. Rev. Mod. Phys., 39(2):395–431.

Kamegashira, N., Satoh, H., and Ashizuka, S. (2004). Synthesis and crystal structure of

hexagonal DyMnO3. Mater. Sci. Forum, 449-452:1045.

Kimura, T., Lawes, G., Goto, T., Tokura, Y., and Ramirez, A. P. (2005). Mangetoelectric

phase diagrams of orthorhombic RMnO3 (R= Gd, Tb and Dy). Phys. Rev. B, 71:224425.

Kunkel, H. P., Roshko, R. M., and Williams, G. (1988). Field-dependent susceptibility of a

paramagnet. Phys. Rev. B, 37(10):5880.

Landau, L. D. (1937). Phys. Z. Sowjetunion, 11:26.

Laverdière, J., Jandl, S., Mukhin, A. A., Ivanov, V. Y., Ivanov, V. G., and Iliev, M. N. (2006).

Spin-phonon coupling in orthorhombic RMnO3 (R=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y):

A Raman study. Phys. Rev. B, 73:214301.

Lebech, B., Clausen, K., and Vogt, O. (1980). First-order transitions and the magnetic phase

diagram of CeSb. J. Phys. C: Solid State Phys., 13:1725.

Lonzarich, G. G. and Taillefer, L. (1985). Effect of spin fluctuations on the magnetic equation

of state of ferromagnetic or nearly ferromagnetic metals. J. Phys. C: Solid State Phys.,

18:4339.

Lorenz, B., Yen, F., Gospodinov, M. M., and Chu, C. W. (2005). Field-induced phases in

HoMnO3 at low temperatures. Phys. Rev. B, 71:014438.

Lottermoser, T., Lonkai, T., Amann, U., Hohlwein, D., Ihringer, J., and Fiebig, M. (2004).

Mangetic phase control by an electric field. Nature, 430:541.



188

Martin, C., Agosta, C. C., Tozer, S. W., Radovan, H. A., Palm, E. C., Murphy, T. P., and

Sarro, J. L. (2005). Evidence for the Fulde-Ferrell-Larkin-Ovchinnikov state in CeCoIn5

from penetration depth measurements. Phys. Rev. B, 71:020503.

Martin, C., Vannette, M. D., Gordon, R. T., Karpinski, J., Zhigaldo, N. D., and Prozorov, R.

(2008). Effect of C and Li doping on the rf magnetic susceptibility in MgB2 single crystals.

in press, Phys. Rev. B. preprint available at arXiv:0807.3098v1.

Matthias, B. T. and Bozorth, R. M. (1958). Ferromagnetism of a zirconium-zinc compound.

Phys. Rev., 109:604–605.

McManus, I. C. (1976). Scrotal asymmetry in man and in ancient sculpture. Nature, 259:426.

Meier, G., Fischer, P., Halg, W., Lebech, B., Rainford, B. D., and Vogt, O. (1978). Magnetic

phase transtions in CeSb. II. Effects of applied magnetic fields. J. Phys. C: Solid State

Phys., 11:1173.

Mohn, P. (2003). Magnetism in the Solid State. Springer.

Moriya, T. (1985). Spin Fluctuations in Itinerant Electron Magnetism. Springer-Verlag.

Moriya, T. and Kawabata, A. (1973). Effect of spin fluctuations on itinerant electron ferro-

magnetism. J. Phys. Soc. Jap., 34(3):639.

Morosan, E., Bud’ko, S. L., and Canfield, P. C. (2005). Magnetic ordering and effects of crystal

electric field anisotropy in the hexagonal compounds RPtIn (R=Y, Gd-Lu). Phys. Rev. B,

72:014425.

Morrish, A. H. (2001). The Physical Principles of Magnetism, Reissue. IEEE Press. Original

edition 1965 published by John Wiley & Sons.

Myers, K. D., Bud’ko, S. L., Antropov, V. P., Harmon, B. N., and Canfield, P. C. (1999a). de

haas-van alphen and shubnikov-de haas oscillations in RAgSb2 (R= Y, La-Nd, Sm). Phys.

Rev. B, 60:13 371.



189

Myers, K. D., Bud’ko, S. L., Fisher, I. R., Islam, Z., Kleinke, H., Lacerda, A. H., and Canfield,

P. C. (1999b). Systematic study of anisotropic transport and magnetic properties of RAgSb2

(R=Y, La-Nd, Sm, Gd-Tm). J. Magn. Magn. Mat., 205:27–52.

Nandi, S., Kreyssig, A., Yan, J. Q., Vannette, M. D., Lang, J. C., Tan, L., Kim, J. W.,

Prozorov, R., Lograsso, T. A., McQueeny, R. J., and Goldman, A. I. (2008). Magnetic

structure of Dy3+ in hexagonal multiferroic DyMnO3. Phys. Rev. B, 78:075118.

Nasch, T., Jeitschko, W., and Rodewald, U. C. (1997). Ternary rare earth transition metal

zinc compounds RT2Zn20 with T=Fe,Ru, Co, Rh, and Ni. Z. Naturforsch. B, 52:1023.

Ni, N., Jia, S., Bud’ko, S. L., and Canfield, P. C. (2008). unpublished.

Pathria, R. K. (1996). Statistical Mechanics, Second Edition. Elsevier.

Prokhnenko, O., Feyerherm, R., Dudzik, E., Landsgesell, S., Aliouane, N., Chapon, L. C., and

Argyriou, D. N. (2007). Enhanced ferroelectric polarization by induced Dy spin order in

multiferroic DyMnO3. Phys. Rev. Lett., 98:057206.

Prozorov, R. and Giannetta, R. W. (2006). Magnetic penetration depth in unconventional

superconductors. Supercond. Sci. Tech., 19:R41–R67.

Prozorov, R., Giannetta, R. W., Carrington, A., and Araujo-Moreira, F. M. (2000). Meissner-

London state in superconductors of rectangular cross section in a perpendicular magnetic

field. Phys. Rev. B, 62(1):115.

Prozorov, R., Kogan, V. G., Vannette, M. D., Bud’ko, S. L., and Canfield, P. C. (2007). Radio-

frequency magnetic response of vortex lattices undergoing structural transformations. Phys.

Rev. B, 76:094520.

Prozorov, R., Vannette, M. D., Gordon, R. T., Martin, C., Bud’ko, S. L., and Canfield, P. C.

(2008a). Coexistence of long-range magnetic order and superconductivity from Campbell

penetration depth measurements. submitted.



190

Prozorov, R., Vannette, M. D., Law, S. A., Bud’ko, S. L., and Canfield, P. C. (2008b). Coex-

istence of ferromagnets and superconductivity in errh4b4 single crystals probed by dynamic

magnetic susceptibilitiy. Phys. Rev. B, 77:100503(R).

Prozorov, R., Vannette, M. D., Samolyuk, G. D., Law, S. A., Bud’ko, S. L., and Canfield, P. C.

(2006). Contactless measurements of Shubnikov-de Haas oscillations in the magnetically

ordered state of CeAgSb2 and SmAgSb2 single crystals. Phys. Rev. B, 75:014413.

Rastogi, A. K. and Coles, B. R. (1985). The magnetic character of Y9Co7. J. Phys. F: Met.

Phys., 15:1165.

Rhodes, P. and Wohlfarth, E. P. (1963). The effective curie-weiss constant of ferromagnetic

metals and alloys. Proc. Roy. Soc. Lond. A, 273(1353):247–258.

Roussat-Mignod, J., Burlet, P., Bartholin, H., Vogt, O., and Lagnier, R. (1980). Specific heat

analysis of the magnetic phase diagram of CeSb. J. Phys. C: Solid State Phys., 13:6318.

Saitoh, E., Miyajima, H., Yamaoka, T., and Tatara, G. (2004). Current-induced resonance

and mass determination of a single magnetic domain wall. Nature, 432:203.

Sarkissian, B. V. B. and Grover, A. K. (1982). The hybrid state of the magnetic superconductor

Y9Co7. J. Phys. F: Met. Phys., 12:L107.
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