Superconductivity—a brief introduction

Reductionism vs. "more is different"

2 different paradigms for physics

- search for smaller and smaller entitieshuge machines, 1000's of scientists
- search for fundamentally new states of matter consisting of many particles
 tableton experiments, small groups
- tabletop experiments, small groups

Discovery of superconductivity in Hg

Heike Kammerling Onnes (1911)

Many elements are superconductors

	IA																	0
.	1		KN	ΟV	۷N :	SUF	PER	.CO	ND	UC	ΤI	/E						2
'	н	IIA			E	LEN	MEI	NTS	3				IIIA	IVA	YA	٧IA	YIIA	He
~	3	4											5	6	7	8	9	10
2	Li	Be		BLUE	= AT	AME	IENT	PRES	5SUR	Ε			В	С	М	0	F	Ne
	11	12	•	GREEN = ONLY UNDER HIGH PRESSURE 13 14 15 16 17 1								18						
3	Na	Mg	ШB	IVB	٧B	ΥIB	ΥIIB		— VII —		IB	IIВ	AL	Si	Р	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	к	Ca	Sc	Ti	Y	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
_	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Ϋ́	Zr	ND	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	*La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	П	Pb	Bi	Ро	At	Rn
-	87	88	89	104	105	106	107	108	109	110	111	112						·
1	Fr	Ra	+ÅC	Rf	Ha	106	107	108	109	110	111	112	SI	IDFD	กางก	шст	290	npc
														JE L K	CONT	0001	01.0.	

65

97

Gd Tb Dy

66

98

Cf

67

99

Es

64

96

68

100

Ho Er

69

Tm

101

Fm Md

70

Yb

102

No

71

103

Lr

Lu

61

93

62

94

Nd Pm Sm Eu

63

95

Np Pu Am Cm Bk

60

92

U

59

91

Pa

Ce Pr

90

Th

*Lanthanide 58 Series C

+ Actinide Series

Conventional superconductors

•Search for an understanding of superconductivity: series of failures and a success

- During 46 years, from 1911 to 1957, superconductivity remains a mystery
- Around 1950 it's recognized as one of the most important problems in theoretical physics
- Richard Feynman: "No one is brilliant enough to figure it out"

Feynman

Heisenberg

Bohr

NIELS BOHR (1885-1962) introduced the idea that the electron moved about the mucleus in well-defined achits. This photograph was made in 1922, nine years after the publication of his paper

Conventional superconductors

• BCS theory (1957)

Quantum mechanical behavior at the macroscopic scale

Leon Cooper

John Bardeen*

Robert Schrieffer

Nobel prize : 1972

*John Bardeen :

the only person to receive two Nobel prizes in physics!

Understanding the BCS idea: Ingredient #1 Attraction & formation of Cooper pairs

How Cooper pairs form Prelude to superconductivity

No animals were harmed during this experiment!

More practical application: sumo wrestler levitation

http://www.youtube.com/watch?v=Ws6AAhTw7RA

Levitation, the movie

High temperature superconductivity

Possible High T_c Superconductivity in the Ba – La – Cu – O System

J.G. Bednorz and K.A. Müller IBM Zürich Research Laboratory, Rüschlikon, Switzerland

Received April 17, 1986

Z. Physik, June 1986

Alex Müller and Georg Bednorz

High temperature superconductivity

Possible High T_c Superconductivity in the Ba – La – Cu – O System

J.G. Bednorz and K.A. Müller IBM Zürich Research Laboratory, Rüschlikon, Switzerland

Received April 17, 1986

Z. Physik, June 1986

Alex Müller and Georg Bednorz

Grüneisen par heavy fermion	ameter coupling in systems	169-174
DOI	10.1007/BF01303699	
Authors	M. Yoshizawa, B. Lüthi and K. D. Schotte	
Text	PDF (494 kb)	

Anomalous temperature dependence of the magnetic field penetration depth in superconducting UBe₁₃

DOI	10.1007/BF01303700				
Authors	F. Gross, B. S. Chandrasekhar, D. Einzel, K. Andres, <u>P. J. Hirschfeld</u> , H. R. Ott, J. Beuers, Z. Fisk and J. L. Smith				
Text	PDF (1,206 kb)				

 Possible highT_c superconductivity in the Ba-La-Cu-O system

DOI	10.1007/BF01303701
Authors	J. G. Bednorz and K. A. Müller
Text	PDF (396 kb)

20 Articles

First | 1-10 | 11-20 | Next

175-188

Superconductivity timeline

Cuprate high-T_c superconductors

$Hg_1Ba_2Ca_2Cu_3O_8$

A. Schilling, M. Cantoni, J. Guo, H.R. Ott, Nature <u>363</u>, 56 (1993)

Iron-based superconductors

Iron-based superconductors

Iron-based superconductors

Superconductivity: Theory

Superconductivity: High T_c

Superconductivity: Ground state

Superconductivity: excited state

Normal State

Normal State (Metal)

Degenerate ~free electron gas

SC Ground State

Degenerate ~free electron gas

SC Ground State

SC Ground State

Macro. Quantum State
$$\Psi_{BCS} = \prod_{k} (u_k + v_k c_{k\uparrow}^* c_{-k\downarrow}^*) |0>$$

s-wave Ψ symmetry $\Psi \sim \Delta_0^* e^{i\phi}$

SC Ground State: Cooper Pairs

The Network management in diagram. The Network water hand a second of

SC Excited States: Bogoliubov Quasiparticles

The stand stand and the stand stan

SC Excited States: Quasiparticles

Study with quantum tunneling!

Types of 2-electron Cooper pair wavefunctions

These wave functions for 2 electrons have shapes similar to atomic 1-electron wavefunctions (see Hydrogen atom)

Unconventional Superconductors

Group-theoretic notation	A _{1g}	A _{2g}	B _{1g}	B _{2g}	
Order parameter basis function	constant	xy(x ² -y ²)	x ² -y ²	ху	
Wave function name	s-wave	g	d _x 2_y2	d _{xy}	
Schematic representation of $\Delta(k)$ in B.Z.	k _y k _x				

Cuprates

density of states for a $d_x^2 - \frac{2}{y}$ Superconductor

Gap magnitude vs. k

Potential applications of HTS: power transmission

US:

Energy transported in powerlines per year: $\sim 3*10^{12}$ kWh

Use of high- T_c cables and transformers:

- reduction of transmission and distribution losses: ~ $6*10^{10}$ kWh / year
- emissions avoided: $100\ 000\ t\ NO_x$

 $\begin{array}{rrr} 200\ 000\ t & \mathrm{SO}_{x} \\ 30\ 000\ 000\ t & \mathrm{CO}_{2} \end{array}$

R. D. Blaughter, Research and Innovation, Siemens, Vol. 1/98, March 1998

transmission lines

Magnetic resonance imaging (MRI)

Research:

1) higher fields
 2) detection of weak fields (SQUID)

Conclusions

Challenges for superconductivity physics:

- find materials with $T_c > 200K$, then room T!
- make devices, wires for power transmission and magnets
- Hirschfeld group:

understand how the #\$!@%\$! things work!

Superconductivity in the popular imagination c. 1987

Television show, "MacGyver"