Dark Matter Direct Detection Searches and Techniques

Tarek Saab University of Florida

> Workshop on Dark Matter in the LHC Era: Direct and Indirect Searches

> > Saha Institute of Nuclear Physics 4th - 8th January, 2011

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS
 - The CDMS Experiment
- Outlook for the future

The Concordance Model of Cosmology

The Nature of Dark Matter

- The Missing Mass Problem:
 - Dynamics of stars, galaxies, and clusters
 - Rotation curves, gas density, gravitational lensing
 - Large Scale Structure formation
- Wealth of evidence for a particle solution
 - MOND has problems with Bullet Cluster
 - Microlensing (MACHOs) mostly ruled out
- Non-baryonic
 - Height of acoustic peaks in the CMB (Ωb)
 - Power spectrum of density fluctuations (Ωm)
 - Primordial Nucleosynthesis
- And STILL HERE!
 - Stable, neutral, non-relativistic
 - Interacts via gravity and/or weak force

WIMPs and WISPs

- We "know" that Dark Matter
 - Has mass
 - Is non-baryonic
 - Was non-relativistic early on in cosmological time
 - Has a certain annihilation cross section
 - Should have a non-zero cross section with quarks
- The Lightest Super Particle (LSP) in many Minimally Supersymmetric Standard Models is a viable candidate. These are called Weakly Interacting Massive Particles: WIMPs
- Another set of candidates are Weakly Interacting Sub-eV Particles: WISPs. This set includes axions and axion-like particles.

The Hunt for Dark Matter

Production in Colliders

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS
 - The CDMS Experiment
- Outlook for the future

Direct Detection and WIMP Astrophysics

Energy spectrum & rate depend on WIMP distribution in Dark Matter Halo

- "Basic" assumptions: isothermal and spherical, with Maxwell-Boltzmann velocity distribution
- v₀ = 220 km/s, v_{rms} = 270 km/s, v_{esc}= 650 km/s
- $\rho = 0.3 \text{ GeV/cm}^3$
- Assume mass = 60 GeV/c^2
- Density = 5000 part/m³

10 WIMPs on average, inside a 2 liter bottle (if mass=60 x proton)

Wimp-nucleus Interaction

• How does a WIMP interact with a nucleus (or how do you calculate its cross section?)

Wimp-nucleus Interaction

- Spin-Independent:
 - The scattering amplitudes from individual nucleons interfere.
 - For zero momentum transfer collisions (extremely soft bumps) they add coherently:

Wimp-nucleus Interaction

- Spin-Dependent:
 - Dominated by unpaired nucleons.
 - For spin-less nuclides, SD cross section = 0.
 - For zero momentum transfer collisions (extremely soft bumps) the cross section is approximately:

Principles of Direct Detection

$$F(E_R) \simeq \exp\left(-E_R m_N R_o^2/3\right)$$
$$m_r = \frac{m_\chi m_N}{m_\chi + m_N}$$
$$T(E_R) \simeq \exp(-v_{\min}^2/v_o^2)$$
$$v_{\min} = \sqrt{E_R m_N/(2m_r^2)}$$

"form factor" (quantum mechanics of interaction with nucleus)

"reduced mass"

integral over local WIMP velocity distribution

minimum WIMP velocity for given E_R

WIMP Hunting

- Elastic scattering of a WIMP from a nucleus deposits a small, but detectable amount of energy ~ few x 10 keV
- Featureless exponential energy spectrum with $\left< E \right> \sim 50 \; keV$
- Expected rate < 0.01/kg-day (based on σ_{x-n} and ρ)
- Radioactive background a million times higher
- Background Reduction/Rejection is key

Low background (< 1) almost a prerequisite for discovery

Signal and Backgrounds

Energy Channels

Discrimination Strategies

Backgrounds

- Backgrounds are much higher than the signal event rate
 - e.g. rate of ⁴⁰K from a person standing 2m away from Ge detector is 10⁴ x expected dark matter signal!

• Gamma-rays and beta decays:

- Shielding: low activity lead, clean copper, water, noble liquids (active)
- Select gamma-clean materials

- Neutrons from fission and (alpha,n) interactions from U/Th decays
 - Neutron moderator: polyethylene, paraffin, water, ...
- Neutrons from cosmic ray muons:
 - Use muon veto, neutron veto, shielding
 - Go deep underground to reduce muon flux!

Separating Signal from Background?

Statistical signature of WIMPs

- Requires significant sample of WIMP recoil events.
- Annual Modulation in the WIMP recoil spectrum. Earth's velocity through the galactic halo is max in June, min in December (DAMA/LIBRA).
- Daily modulation of the incident WIMP direction. Measure the direction of the short track produced by nuclear recoil. (DM-TPC)

Event-by-event discrimination

- Requires powerful particle identification technique at low energies.
- Allows to extract good sensitivity from relatively small exposures.

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS
 - The CDMS Experiment
- Outlook for the future

Worldwide Dark Matter Searches

DAMA / LIBRA

- Talk by Fabio Cappella
- Eur. Phys. J. C (2010) 67: 39-49

DM-TPC

- A Directional Dark Matter Detector
- Seeks to see the daily modulation of the Dark Matter Signal due to the rotation of the Earth through the prevailing "Dark Matter Wind"

Spergel, PRD, 1988

DM-TPC Status

- Installing a 10 liter CF₄ detector underground at WIPP
- Expect competitive sensitivities to Spin-Dependent WIMPs.

COUPP

- Superheated Bubble Chamber
- Insensitive to photons (but sensitive to alphas)
- Uses superheated CF₃I (sensitive to both spin-dependent and spin-independent interactions)

Bubbles!

Alpha event

Acoustic Discrimination Between Neutrons and Alphas

COUPP Spin-Dependent Limit

COUPP 60 kg

 A 60 kg bubble chamber is being tested at Fermilab and will be moved to SNOLab in the near future...

CoGeNT

- P-type Point Contact Germanium Detector
- 440g detector
- Low 0.4 keVee threshold
- Operating in the Soudan Mine in Minnesota

arXiv: 1002.4703v2

Surface Event Discrimination

- Slower risetime of pulses on the n+ surface allows a cut to be placed on DM search data (lower)
- Inset shows fast and slow risetime pulses

CoGeNT Signal Region

Interpretations...

- Hooper et. al give a possible WIMP candidate consistent with CoGeNT, DAMA, CRESST, and the null results by XENON and CDMS.
- Ritoban Basu Thakur will report on the latest CDMS results on a low mass WIMP candidate

arXiv:1007.1005v2

Liquid Noble Detectors

- Time Projection Chambers
 - XENON
 - LUX
 - Zeplin (also a Xe TPC)
 - WArP (uses Argon)
- Single Phase Detectors
 - DEAP / CLEAN (Argon and Neon)
 - XMASS (800 kg under construction!)

XMASS

- 800 kg Liquid XENON in Kamioka
- Self-Shielding gives a lowbackground region in the middle of the detector.
- 100 kg Fiducial Volume
- WIMP search early next year.

Water Tank

10m

Om

cosmic ray

70 PMTs (20 inch) to detect Cerenkov Light (same as SK) Active shield for muon induced events

Passive shield for γ and neutron from Rock

Data Coming Soon!

OFHC Filler

Cryogenic Solid State Detectors

- Array of Smaller Detectors
- Potential for extreme background discrimination
- Aim to operate in "zero" background mode
- Examples:
 - CRESST
 - Edelweiss (pictured)
 - CDMS

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS

• The CDMS Experiment

• Outlook for the future

CDMS: The Big Picture

Use discrimination and shielding to maintain a Nearly Background Free experiment with cryogenic semiconductor detectors

- Shielding
 - Passive (Mine Depth, Pb, Poly)
 - Active (muon veto shield)
- Energy Measurement
 - Phonon (True recoil energy)
 - Charge (Reduced for Nuclear)
- Position measurement (x,y,z)
 - From phonon pulse timing

1. Suppress all backgrounds

780 m rock	(2090 m water equiv.)			
Active veto	muon scintillator			
Polyethylene	neutron moderation			
Lead	shields gammas			
Ancient Lead	shields ²¹⁰ Pb betas			
Polyethylene	shields ancient lead			
Radiopure Copper inner can				
Radiopure Ge "target"				

1. Suppress all backgrounds

780 m rock	(2090 m water equiv.)			
Active veto	muon scintillator			
Polyethylene	neutron moderation			
Lead	shields gammas			
Ancient Lead	shields ²¹⁰ Pb betas			
Polyethylene	shields ancient lead			
Radiopure Copper inner can				
Radiopure Ge "target"				

1. Suppress all backgrounds

780 m rock (2090 m water equiv.)

Active veto	muon scintillator			
Polyethylene	neutron moderation			
Lead	shields gammas			
Ancient Lead	shields ²¹⁰ Pb betas			
Polyethylene	shields ancient lead			
Radiopure Copper inner can				
Radiopure Ge	"target"			

1. Suppress all backgrounds

780 m rock (2090 m water equiv.)

Active veto muon scintillator

Polyethyleneneutron moderationLeadshields gammasAncient Leadshields 210Pb betas

Polyethylene shields ancient lead

Radiopure Copper inner can

1. Suppress all backgrounds

780 m rock (2090 m water equiv.)

Active veto muon scintillator

Polyethylene neutron moderation

shields gammas

Ancient Lead shields ²¹⁰Pb betas

Polyethylene shields ancient lead

Radiopure Copper inner can

Radiopure Ge "target"

_ead

1. Suppress all backgrounds

780 m rock(2090 m water equiv.)Active vetomuon scintillatorPolyethyleneneutron moderationLeadshields gammas

Ancient Lead shields ²¹⁰Pb betas

Polyethylene shields ancient lead Radiopure Copper inner can Radiopure Ge "target"

1. Suppress all backgrounds

780 m rock (2090 m water equiv.)

Active veto muon scintillator

Polyethylene neutron moderation

Lead shields gammas

Ancient Lead shields ²¹⁰Pb betas

Polyethylene shields ancient lead

Radiopure Copper inner can

1. Suppress all backgrounds

780 m rock (2090 m water equiv.)

Active veto muon scintillator

Polyethylene neutron moderation

Lead shields gammas

Ancient Lead shields ²¹⁰Pb betas

Polyethylene shields ancient lead

Radiopure Copper inner can

1. Suppress all backgrounds

780 m rock (2090 m water equiv.)

Active veto muon scintillator

Polyethylene neutron moderation

Lead shields gammas

Ancient Lead shields ²¹⁰Pb betas

Polyethylene shields ancient lead

Radiopure Copper inner can

 30-40 mK base temperature stage holds an array of Towers

 30-40 mK base temperature stage holds an array of Towers

 30-40 mK base temperature stage holds an array of Towers

 30-40 mK base temperature stage holds an array of Towers

 30-40 mK base temperature stage holds an array of Towers

 30-40 mK base temperature stage holds an array of Towers

CDMS II Detectors

CDMS II Detectors

Excellent Primary (γ) Background Rejection

Radioactive source data defines the signal (NR) and background (ER)

>10⁴ Rejection of γ

Yield = Ionization/Phonon

Excellent Primary (γ) Background Rejection

Radioactive source data defines the signal (NR) and background (ER)

>10⁴ Rejection of γ

Yield = Ionization/Phonon

Events with low yield can be misidentified as nuclear recoils

Surface β Rejection

Secondary Discrimination: Phonon Timing

Surface β Rejection

Secondary Discrimination: Phonon Timing

Setting the Signal Region

CDMS II (2006-2008)

30 detectors (5 Towers)installed in Soudan icebox:4.4 kg Ge, 1.1 kg Si

Combination of Ge and Si Detectors

- Neutron background measurement
- WIMP Mass Measurement
- Ge more sensitive to higher mass WIMPs, Si to lower mass WIMPs

WIMP Search Exposure

4 runs separated by partial warmups of cryostat Dates of data taking: 7/2007 - 9/2008

Background Estimate

Surface Events:	0.6 ±0.1	Data (we chose this)			
Cosmogenic Neutrons:	0.04 ^{+0.04} - 0.03	vetoed x Data	(un v	(<u>unvetoed</u>) vetoed) Monte Carlo	
Radiogenic Neutrons:	0.057 ^{+0.0035} - 0.02	Materials Testing	&	Monte Carlo	

Opening the Box

Opening the Box

FAIL TIMING CUT:

¹⁵⁰ events in the NR band fail the timing cut, consistency checks deemed ok

Opening the Box

Post-Unblinding Analysis

Post-Unblinding Analysis

Post-Unblinding Analysis

New σ_{SI} Upper Limit

SuperCDMS phases - Moore's Law if zero bkgd

See e.g. 'Background Penalty Factor', Scott Dodelson arXiv 0812.0787v2

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS
 - The CDMS Experiment
- Outlook for the future

The Future

- Next few years will have several experiments probing significant new parameter space.
- Look for new results from Liquid Nobles, Bubble Chambers, Scintillators, and Cryogenic Detectors (see talk by Rupak Mahapatra on the GEODM project).

The Future: Exciting Times Ahead!

- We need several targets to check potential signal's dependence on A and spin.
- We need several technologies with different systematics for cross checks and insurance against unexpected backgrounds in any one experiment.

