Dark Matter Direct Detection Searches and Techniques

Tarek Saab University of Florida

TASI: The Dark Secrets of the Terascale

University of Colorado, Boulder

29 - 30th June, 2011

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS
- Outlook for the future

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS
- Outlook for the future

The Concordance Model of Cosmology

The Concordance Model of Cosmology

The Nature of Dark Matter

- The Missing Mass Problem:
 - Dynamics of stars, galaxies, and clusters
 - Rotation curves, gas density, gravitational lensing
 - Large Scale Structure formation
- Wealth of evidence for a particle solution
 - MOND has problems with Bullet Cluster
 - Microlensing (MACHOs) mostly ruled out
- Non-baryonic
 - Height of acoustic peaks in the CMB (Ωb)
 - Power spectrum of density fluctuations (Ωm)
 - Primordial Nucleosynthesis
- And STILL HERE!
 - Stable, neutral, non-relativistic
 - Interacts via gravity and/or weak force

Optical + weak-lensing

The Bullet Cluster

Clowe et al. 2006

White: Visible Light = Galaxies Red: X-rays = Intergalactic Plasma 15 Blue: Dark Matter map derived from Weak Lensing

WIMPs and WISPs

- We "know" that Dark Matter
 - Has mass
 - Is non-baryonic
 - Was non-relativistic early on in cosmological time
 - Has a certain annihilation cross section
 - Should have a non-zero cross section with quarks
- The Lightest Super Particle (LSP) in many Minimally Supersymmetric Standard Models is a viable candidate. These are called Weakly Interacting Massive Particles: WIMPs
- Another set of candidates are Weakly Interacting Sub-eV Particles: WISPs. This set includes axions and axion-like particles.

The Hunt for Dark Matter

Production in Colliders

The Hunt for Dark Matter

Production in Colliders

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection`
 - WIMP-Nucleus Interactions
 - WIMP-Detector Interactions
 - Axion Detection
- Experimental Searches for WIMPS
- Outlook for the future

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection`

• WIMP-Nucleus Interactions

- WIMP-Detector Interactions
- Axion Detection
- Experimental Searches for WIMPS
- Outlook for the future

- Elastic scattering of the neutralino off of a nucleus :
 - Can occur via spin-dependent/independent channels
 - Must be able to detect the small amount of energy imparted to the recoiling nucleus
 - Distinguish this event from the overwhelming number of background events.

- Spin-Independent:
 - The scattering amplitudes from individual nucleons interfere.
 - For zero momentum transfer collisions (extremely soft bumps) they add coherently:

$$m_r = \frac{m_\chi m_N}{m_\chi + m_N} = \text{``reduced mass''}$$

- Spin-Independent:
 - The scattering amplitudes from individual nucleons interfere.
 - For zero momentum transfer collisions (extremely soft bumps) they add coherently:

- Spin-Dependent:
 - Dominated by unpaired nucleons.
 - For spin-less nuclides, SD cross section = 0.
 - For zero momentum transfer collisions (extremely soft bumps) the cross section is approximately:

 $F(E_R) \simeq \exp\left(-E_R m_N R_o^2/3\right)$

"form factor" (quantum mechanics of interaction with nucleus)

$$F(E_R) \simeq \exp\left(-E_R m_N R_o^2/3\right)$$
$$m_r = \frac{m_\chi m_N}{m_\chi + m_N}$$

"form factor" (quantum mechanics of interaction with nucleus)

"reduced mass"

$$F(E_R) \simeq \exp\left(-E_R m_N R_o^2/3\right)$$
$$m_r = \frac{m_\chi m_N}{m_\chi + m_N}$$

"form factor" (quantum mechanics of interaction with nucleus)

"reduced mass"

$$F(E_R) \simeq \exp\left(-E_R m_N R_o^2/3\right)$$
$$m_r = \frac{m_\chi m_N}{m_\chi + m_N}$$
$$T(E_R) \simeq \exp(-v_{\min}^2/v_o^2)$$

"form factor" (quantum mechanics of interaction with nucleus)

"reduced mass"

integral over local WIMP velocity distribution

$$F(E_R) \simeq \exp\left(-E_R m_N R_o^2/3\right)$$
$$m_r = \frac{m_\chi m_N}{m_\chi + m_N}$$
$$T(E_R) \simeq \exp(-v_{\min}^2/v_o^2)$$
$$v_{\min} = \sqrt{E_R m_N/(2m_r^2)}$$

"form factor" (quantum mechanics of interaction with nucleus)

"reduced mass"

integral over local WIMP velocity distribution

minimum WIMP velocity for given E_R
Exercise

• What is the minimum velocity needed v_{min} for a WIMP with mass m_{χ} to produce a 10 keV recoil in a nucleus of mass m_{N} ?

• What is the maximum recoil energy E_{max} that a WIMP with mass m_χ and velocity $v_\chi\,$ can produce in a nucleus of mass $m_N\,?$

Direct Detection and WIMP Astrophysics

Energy spectrum & rate depend on WIMP distribution in Dark Matter Halo

- "Basic" assumptions: isothermal and spherical, with Maxwell-Boltzmann velocity distribution
- v₀ = 220 km/s, v_{rms} = 270 km/s, v_{esc}= 650 km/s
- $\rho = 0.3 \text{ GeV/cm}^3$
- Assume mass = 60 GeV/c^2
- Density = 5000 part/m³

10 WIMPs on average, inside a 2 liter bottle (if mass=60 x proton)

The Dark Matter Wind

apparently "blows" from Cygnus

Our speed relative to the halo is ~220 km/s

WIMP Recoil Spectrum

- Elastic scattering of a WIMP from a nucleus deposits a small, but detectable amount of energy ~ few x 10 keV
 - If the WIMPs are mono-energetic (or rather have a single velocity)

WIMP Recoil Spectrum

- Elastic scattering of a WIMP from a nucleus deposits a small, but detectable amount of energy ~ few x 10 keV
- Featureless exponential energy spectrum with $\left< E \right> \sim 50 \; keV$
- Expected rate < 0.01/kg-day (based on $\sigma_{X^{-n}}$ and ρ)
- Radioactive background a million times higher
- Background Reduction/Rejection is key

• Low background (< 1) almost a prerequisite for discovery

Exercise

Even under the assumption of a standard non-rotating, isotropic halo, the velocity distribution of WIMPS is not truly Maxwellian.
It has a cutoff at v_{max}, where v_{max} is the escape velocity of the WIMP at the radius of the sun in the galaxy. If v_{max} = 600 km/s what is the total mass M_G of the milkyway contained inside the solar orbit radius?

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection`
 - WIMP-Nucleus Interaction
 - WIMP-Detector Interaction
 - Axion Detection
- Experimental Searches for WIMPS
- Outlook for the future

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection`
 - WIMP-Nucleus Interaction
 - WIMP-Detector Interaction
 - Axion Detection
- Experimental Searches for WIMPS
- Outlook for the future

Principles of Direct Detection

- The physics discussed so far is required for choosing the "ideal" target nucleus for maximizing the rate of Dark Matter interactions in your experiment
- Equally important considerations :
 - When dealing with 10²⁶ nuclei, must consider the physical behavior of the solid/liquid/gas which the nuclei form
 - How can we extract/measure the recoil information in a given medium
 - What are the **background** issues associated with this material

Principles of Direct Detection

• Various experimental methods exist for measuring such an energy deposition

- Scintillation in crystals / liquids
- Ionization in crystals / liquids
- Thermal / athermal heating in crystals
- Bubble formation in liquids / gels
- Easy in principle, hard in practice
 - Significant uncertainties/unknowns in estimating DM event rates / energy spectrum
 - Background rates overwhelm the most optimistic DM scattering rates !!

Backgrounds

- Backgrounds are much higher than the signal event rate
 - e.g. rate of ⁴⁰K from a person standing 2m away from Ge detector is 10⁴ x expected dark matter signal!

• Gamma-rays and beta decays:

- Shielding: low activity lead, clean copper, water, noble liquids (active)
- Select gamma-clean materials

- Neutrons from fission and (alpha,n) interactions from U/Th decays
 - Neutron moderator: polyethylene, paraffin, water, ...
- Neutrons from cosmic ray muons:
 - Use muon veto, neutron veto, shielding
 - <u>Go deep underground to reduce</u> <u>muon flux!</u>

Separating Signal from Background?

• Statistical signature of WIMPs

- Requires significant sample of WIMP recoil events.
- Requires accurate knowledge of the astrophysical parameters of the WIMP halo
 - Annual Modulation in the WIMP recoil spectrum. Earth's velocity through the galactic halo is max in June, min in December (DAMA/LIBRA).
 - Daily modulation of the incident WIMP direction. Measure the direction of the short track produced by nuclear recoil. (DM-TPC)

• Event-by-event discrimination

- Requires powerful particle identification technique at low energies.
- Allows to extract good sensitivity from relatively small exposures.

Directional Signal

- Temporal variation of the WIMP signal provides a means to distinguish it from background
- Variation can happen in the:
 - Energy spectrum
 - Event rate
 - Recoil direction
- All such variations depend on direction of the earth through the WIMP "wind"

Annual Modulation

Diurnal Modulation

The distribution of the angle α between the solar motion and recoil directions: peaks at α =180°

Detector Physics to the Rescue

Energy Channels

The Dark Matter Reach of an Experiment

- The reach, or sensitivity, of an experiment can be quantified as a function of four parameters:
 - The background rate: B
 - The background misidentification fraction: β
 - The signal acceptance fraction: α
 - And the exposure: MT (where M is the mass of the detectors and T is the duration of the experiment)

The Dark Matter Reach of an Experiment

- For experiments which do not distinguish between signal and background:
 - $\beta = 1, 0 < \alpha < 1$
 - For the case of zero observed events, the 90% confidence level sensitivity (S₉₀) is: 2.3

$$S_{90} \propto \frac{2.3}{\alpha MT}$$

the sensitivity improves linearly with exposure

• When some background events (N_{bkg}) are observed, the limits becomes:

$$S_{90} \propto \frac{N_{bkg} + 1.28\sqrt{N_{bkg}}}{\alpha MT} \longrightarrow \frac{B}{\alpha} + \frac{1.28}{\alpha}\sqrt{\frac{\beta B}{MT}}$$

 So, as soon as background is "accurately" observed, i.e. <N_{bkg}> = BMT, the sensitivity stops improving

Experimental Reach: The Power of Discrimination

- For experiments which do distinguish between signal and background:
 - Define a continuous parameter η . η is any event parameter on which β and α can depend, i.e. $\beta(\eta)$ and $\alpha(\eta)$
 - The statistical sensitivity (S_{stat}) is:

$$S_{stat} = \sqrt{\frac{\beta(1-\beta)}{(\alpha-\beta)^2}} \sqrt{\frac{B}{MT}}$$

- Let $Q = \beta(1-\beta)/(\alpha-\beta)^2$, the value of η can be chosen to minimize Q.
- For discriminating detectors, values of Q~10⁻³ are achievable, leading to a very low sensitivity (this is a good thing)
- When some background events (N_{bkg}) are observed, the limit continues to improve with the square root of MT

Experimental Sensitivity vs Time

- Ideal behavior = Perfect discrimination between signal and event.
 - Place a cut at η_0 anywhere: We get the ideal detector behavior, i.e. $\beta=0$, $\alpha=1$
- Real detector resolution: Discrimination ability is somewhat degraded
 - There is now a preferred location for the cut η_0 with $\beta \neq 0$, $\alpha < 1$

- Ideal behavior = Perfect discrimination between signal and event.
 - Place a cut at η_0 anywhere: We get the ideal detector behavior, i.e. $\beta=0$, $\alpha=1$
- Real detector resolution: Discrimination ability is somewhat degraded
 - There is now a preferred location for the cut η_0 with $\beta \neq 0$, $\alpha < 1$

- Ideal behavior = Perfect discrimination between signal and event.
 - Place a cut at η_0 anywhere: We get the ideal detector behavior, i.e. $\beta=0$, $\alpha=1$

- Ideal behavior = Perfect discrimination between signal and event.
 - Place a cut at η_0 anywhere: We get the ideal detector behavior, i.e. $\beta=0$, $\alpha=1$
- Real detector resolution: Discrimination ability is somewhat degraded

- Ideal behavior = Perfect discrimination between signal and event.
 - Place a cut at η_0 anywhere: We get the ideal detector behavior, i.e. $\beta=0$, $\alpha=1$
- Real detector resolution: Discrimination ability is somewhat degraded
 - There is now a preferred location for the cut η_0 with $\beta \neq 0$, $\alpha < 1$

Discriminating Variables

- Ideal behavior = Perfect discrimination between signal and event.
 - Place a cut at η_0 anywhere: We get the ideal detector behavior, i.e. $\beta=0$, $\alpha=1$
- Real detector resolution: Discrimination ability is somewhat degraded
 - There is now a preferred location for the cut η_0 with $\beta \neq 0$, $\alpha < 1$

Generic Event Parameter: n

Dark Matter Direct Detection Searches and Techniques

Tarek Saab University of Florida

TASI: The Dark Secrets of the Terascale

University of Colorado, Boulder

29 - 30th June, 2011

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS
- Outlook for the future

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS
- Outlook for the future

Worldwide Dark Matter Searches

Dark Matter Search Elements

The Classical Approach

• Background Discrimination :

- Small difference in pulse shape between electron and nuclear recoils
- Insufficient for event by event discrimination, but can be used on a statistical basis

• Mass / Exposure

- Operating 250 kg of detectors at the Gran Sasso underground laboratory (~3000 mwe) since 2003
- Recently finished operating 100 kg of detectors for 7 years (DAMA)
- Background rate ~ 1 evt/kg/keV/day

Nal Scintillator

Inside LIBRA

DAMA/LIBRA Collaboration

Libra Spectrum

The Libra/DAMA Signal

- Observed a modulating signal in the lowest energy bins
 - Amplitude and phase of modulation consistent with standard WIMP halo model

2-4 keV

The Libra/DAMA Signal

- Observed a modulating signal in the lowest energy bins
 - Amplitude and phase of modulation consistent with standard WIMP halo model

2-4 keV

CoGeNT

- P-type Point Contact Germanium Detector
- 440g detector
- Low 0.4 keVee threshold
- Operating in the Soudan Mine in Minnesota

arXiv: 1002.4703v2

Surface Event Discrimination

- Slower risetime of pulses on the n+ surface allows a cut to be placed on DM search data (lower)
- Inset shows fast and slow risetime pulses

WIMP Modulation Signal?

- Fitting the data:
 - Modulation minimum in October 16
 - DAMA modulation minimum in Dec 2

XMASS

- 800 kg Liquid XENON in Kamioka
- Self-Shielding gives a lowbackground region in the middle of the detector.
- 100 kg Fiducial Volume
- WIMP search early next year.

Water Tank

10m

Om

cosmic ray

70 PMTs (20 inch) to detect Cerenkov Light (same as SK) Active shield for muon induced events

Passive shield for γ and neutron from Rock water purification system

Rn: ~ 1mBq/m³ 5ton/hour

Water Tank

entrance (clean room)

Experimental Hall

Distillation Tower

2000

Xenon Buffer Tank

Data Coming Soon!

OFHC Filler

Insensitivity to Backgrounds

COUPP

- Superheated Bubble Chamber
- Insensitive to photons (but sensitive to alphas)
- Uses superheated CF₃I (sensitive to both spin-dependent and spin-independent interactions)

COUPP (see also PICASSO / ORPHEUS)

- Chicagoland Observatory for Underground Particle Physics
- Target : Halocarbon liquids
 - CF₃Br, CF₃I, ... (even Xe)
 - Sensitive to both spin-dependent AND spin-independent interactions

Detection Mechanism

- Bubble formation in superheated liquid
- Pressure sensor detects formation of bubble, triggers imaging camera
- Sensitive to events with recoil energy above a specific tunable threshold

COUPP

• Background Discrimination :

- Insensitive to electron recoils (deposited energy density insufficient to create bubble)
- By selecting operating pressure can reduce fraction of electron recoils resulting in bubble to $\sim 10^{-9}$

• Mass / Exposure

- Finished operating 2 kg of detector at Fermilab underground site (~300 mwe)
- Currently upgrading towards larger mass detectors: ~ 60 kg
- Expect background rate ~ 10⁻⁵ evt/kg/keV/day

Bubbles!

Alpha event

COUPP in Action

A triple scatter neutron event

Bubble at the interface

Bubble at the interface

Bubble at the interface

Acoustic Discrimination Between Neutrons and Alphas

Acoustic Discrimination Between Neutrons and Alphas

Acoustic Discrimination Between Neutrons and Alphas

COUPP 60 kg

 A 60 kg bubble chamber is being tested at Fermilab and will be located at SNOLab in the near future...

- Project In CAnada to Search for Supersymmetric Objects
- Target : Fluoriunated Halocarbon liquids
 - **CF**₄
 - Sensitive to spin-dependent interactions

Detection Mechanism

- Bubble formation in superheated liquid
- Acoustic sensors detect formation of bubble
- Sensitive to events with recoil energy above a specific tunable threshold

• Background Discrimination :

- Insensitive to electron recoils (deposited energy density insufficient to create bubble)
- By selecting operating temperature can vary nuclear recoil energy thresholds
- Sensitive to α interactions in the detectors

• Mass / Exposure

- Currently operating 3 detectors with an active target mass of 19.4 g at SNOLab (~6060 mwe)
- 1.98 kg day of exposure accumulated

PICASSO Collaboration

PICASSO in Action

ULTIMA

- Ultra Low Temperature Instrumentation for Measurements in Astrophysics
- Target : ³He Superfluid
 - Sensitive to spin dependent interactions

Detection Mechanism

- Recoil energy: Calorimetric measurement via quasiparticle induced damping of a vibrating wire resonator
- Background Performance :
 - Extreme purity of ³He results in an intrinsically low background detector
 - Scintillation photons can be absorbed/measured by a neighboring detector
 - Potential pulse shape based discrimination

Background Rejection

DM-TPC

- A Directional Dark Matter Detector
- Seeks to see the daily modulation of the Dark Matter Signal due to the rotation of the Earth through the prevailing "Dark Matter Wind"

Spergel, PRD, 1988

Time Projection Chamber

Measurement of head-tail direction

800

100 pixels = 6 mm

Dujmic et al. Astropart. Phys. 30 (2008) arXiv:0804.4827

Liquid Nobles

Liquid Noble Detectors

- Time Projection Chambers
 - XENON
 - LUX
 - Zeplin (also a Xe TPC)
 - WArP (uses Argon)
- Single Phase Detectors
 - DEAP / CLEAN (Argon and Neon)
 - XMASS (800 kg under construction!)

XENON (see also WARP / CLEAN)

• Target : Liquid Xenon

- A = 131
- Large sensitivity to spin-independent interactions
- Sensitive to spin-dependent interaction through ¹²⁹Xe, ¹³¹Xe isotopes

• Detection Mechanism

- Scintillation in LXe : detected by photomultiplier tubes above the liquid (prompt signal)
- Ionization in LXe : Electrons drifted through the liquid by an electric field. Result in scintillation in Xe vapor above the liquid (delayed signal ~ 150 μs)
- #scintillation photons / ionization electrons proportional to recoil energy (roughly 200 photons for a 16 keV recoil)

XENON: Detection Mechanism

Time constants depend on gas (Ne: few ns/15.4µs, Ar: 10ns/1.5µs, Xe: 3/27 ns) Excitation/Ionization depends on dE/dx! \Rightarrow discrimination of signal (WIMPs \rightarrow NR) and (most of the) background (gammas \rightarrow ER)!

• Background Discrimination :

- Higher ratio of scintillation to ionization signal for nuclear recoils compared to electron recoils
- Able to achieve event be event discrimination at 99%

• Mass / Exposure

- Operated a 10 kg of detector at the Gran Sasso underground laboratory (~3000 mwe)
- Exposure of 136 kg-day
- Currently operating a 100 kg detector

The XENON Design

Self shielding in Liquid Xenon

- A big advantage of the liquid xenon detector is its self shielding ability
 - Xenon is a heavy nucleus, and LXe is a dense material --> excellent particle attenuation properties
 - Xenon liquifies at 166K, so most impurities will be frozen out outside the detector

Event Signals in Liquid Xenon

Zooming in on S1 & S2

• Rejection is > 99.6% for 50% Nuclear Recoil acceptance

- Cuts: fiducial volume (remove events at teflon edge where poor charge collection)
- Multiple scatters (more than one S2 pulse)

Signal Loss in Liquid Detectors

XENON Data

Cryogenic Solid State Detectors

- Array of Smaller Detectors
- Potential for extreme background discrimination
- Aim to operate in "zero" background mode
- Examples:
 - CRESST
 - Edelweiss (pictured)
 - CDMS

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS
 - The CDMS Experiment
- Outlook for the future

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS

• The CDMS Experiment

• Outlook for the future

CDMS: The Big Picture

Use discrimination and shielding to maintain a Nearly Background Free experiment with cryogenic semiconductor detectors

- Shielding
 - Passive (Mine Depth, Pb, Poly)
 - Active (muon veto shield)
- Energy Measurement
 - Phonon (True recoil energy)
 - Charge (Reduced for Nuclear)
- Position measurement (x,y,z)
 - From phonon pulse timing

1. Suppress all backgrounds

780 m rock	(2090 m water equiv.)
Active veto	muon scintillator
Polyethylene	neutron moderation
Lead	shields gammas
Ancient Lead	shields ²¹⁰ Pb betas
Polyethylene	shields ancient lead
Radiopure Co	pper inner can
Radiopure Ge	"target"

1. Suppress all backgrounds

780 m rock	(2090 m water equiv.)	
Active veto	muon scintillator	
Polyethylene	neutron moderation	
Lead	shields gammas	
Ancient Lead	shields ²¹⁰ Pb betas	
Polyethylene	shields ancient lead	
Radiopure Copper inner can		
Radiopure Ge "target"		

1. Suppress all backgrounds

780 m rock (2090 m water equiv.)

Active veto	muon scintillator	
Polyethylene	neutron moderation	
Lead	shields gammas	
Ancient Lead	shields ²¹⁰ Pb betas	
Polyethylene	shields ancient lead	
Radiopure Copper inner can		
Radiopure Ge	"target"	

1. Suppress all backgrounds

780 m rock (2090 m water equiv.)

Active veto muon scintillator

Polyethyleneneutron moderationLeadshields gammasAncient Leadshields 210Pb betas

Polyethylene shields ancient lead

Radiopure Copper inner can

Radiopure Ge "target"

1. Suppress all backgrounds

780 m rock (2090 m water equiv.)

Active veto muon scintillator

Polyethylene neutron moderation

shields gammas

Ancient Lead shields ²¹⁰Pb betas

Polyethylene shields ancient lead

Radiopure Copper inner can

Radiopure Ge "target"

_ead

1. Suppress all backgrounds

780 m rock(2090 m water equiv.)Active vetomuon scintillatorPolyethyleneneutron moderationLeadshields gammas

Ancient Lead shields ²¹⁰Pb betas

Polyethylene shields ancient lead Radiopure Copper inner can Radiopure Ge "target"

1. Suppress all backgrounds

780 m rock (2090 m water equiv.)

Active veto muon scintillator

Polyethylene neutron moderation

Lead shields gammas

Ancient Lead shields ²¹⁰Pb betas

Polyethylene shields ancient lead

Radiopure Copper inner can

Radiopure Ge "target"

1. Suppress all backgrounds

780 m rock (2090 m water equiv.)

Active veto muon scintillator

Polyethylene neutron moderation

Lead shields gammas

Ancient Lead shields ²¹⁰Pb betas

Polyethylene shields ancient lead

Radiopure Copper inner can

Radiopure Ge "target"

Observation Strategy

1. Suppress all backgrounds

780 m rock (2090 m water equiv.)

Active veto muon scintillator

Polyethylene neutron moderation

Lead shields gammas

Ancient Lead shields ²¹⁰Pb betas

Polyethylene shields ancient lead

Radiopure Copper inner can

Radiopure Ge "target"

 30-40 mK base temperature stage holds an array of Towers

 30-40 mK base temperature stage holds an array of Towers

 30-40 mK base temperature stage holds an array of Towers

 30-40 mK base temperature stage holds an array of Towers

 30-40 mK base temperature stage holds an array of Towers

 30-40 mK base temperature stage holds an array of Towers

 30-40 mK base temperature stage holds an array of Towers

Getting the Energy to the Phonon Sensors

CDMS II Detectors

CDMS II Detectors

Charge Side

CDMS II Detectors

Radioactive source data defines the signal (NR) and background (ER)

Radioactive source data defines the signal (NR) and background (ER)

>10⁴ Rejection of γ

Radioactive source data defines the signal (NR) and background (ER)

>10⁴ Rejection of γ

Yield = Ionization/Phonon

Radioactive source data defines the signal (NR) and background (ER)

>10⁴ Rejection of γ

Yield = Ionization/Phonon

Radioactive source data defines the signal (NR) and background (ER)

>10⁴ Rejection of γ

Yield = Ionization/Phonon

Events with low yield can be misidentified as nuclear recoils

Radioactive source data defines the signal (NR) and background (ER)

>10⁴ Rejection of γ

Yield = Ionization/Phonon

Events with low yield can be misidentified as nuclear recoils

Surface Events

βs and low-energy γs don't penetrate the detector. These surface events can pollute the signal region and are the dominant background for CDMS.

Setting the Signal Region

Setting the Signal Region

CDMS II (2006-2008)

30 detectors (5 Towers)installed in Soudan icebox:4.4 kg Ge, 1.1 kg Si

Combination of Ge and Si Detectors

- Neutron background measurement
- WIMP Mass Measurement
- Ge more sensitive to higher mass WIMPs, Si to lower mass WIMPs

WIMP Search Exposure

4 runs separated by partial warmups of cryostat Dates of data taking: 7/2007 - 9/2008

Background Estimate

Surface Events:	0.6 ±0.1	Data (we chose this)		
Cosmogenic Neutrons:	0.04 ^{+0.04} - 0.03	vetoed x Data	(<u>unvetoed</u>) vetoed) Monte Carlo	
Radiogenic Neutrons:	0.057 ^{+0.0035} - 0.02	Materials Testing	&	Monte Carlo

Opening the Box

Opening the Box

FAIL TIMING CUT:

150 events in the NR band fail the timing cut, consistency checks deemed ok

Opening the Box

Movie Time

Post-Unblinding Analysis

SuperCDMS phases - Moore's Law if zero bkgd

See e.g. 'Background Penalty Factor', Scott Dodelson arXiv 0812.0787v2

Experimental Limits

WIMP exclusion plots

• Two WIMP parameters experimentally determined by direct detection searches : $M_{\chi},\,\sigma_{\chi\text{-N}}$

Spin-Independent Limits

Spin-Independent Limits

Spin-Independent Limits: Low Energy Analysis

Inelastic Scattering Limits

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS
 - The CDMS Experiment
- Outlook for the future

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection
- Experimental Searches for WIMPS
 - The CDMS Experiment
- Outlook for the future

The Future

- Next few years will have several experiments probing significant new parameter space.
- Look for new results from Liquid Nobles, Bubble Chambers, Scintillators, and Cryogenic Detectors (see talk by Rupak Mahapatra on the GEODM project).

The Future: Exciting Times Ahead!

- We need several targets to check potential signal's dependence on A and spin.
- We need several technologies with different systematics for cross checks and insurance against unexpected backgrounds in any one experiment.

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection`
 - WIMP-Nucleus Interactions
 - WIMP-Detector Interactions
 - Axion Detection
- Experimental Searches for WIMPS
- Outlook for the future

Outline

- Overview of the Dark Matter Problem
- Principles of Direct Detection`
 - WIMP-Nucleus Interactions
 - WIMP-Detector Interactions

Axion Detection

- Experimental Searches for WIMPS
- Outlook for the future

Axions

• Other potential type of cold dark matter

- Recall: the only requirements on Dark Matter is that
 - It is non-baryonic
 - It has mass
 - It was non-relativistic soon after the Big Bang
- Axions were originally postulated to explain why the strong interactions are invariant under the discrete symmetries P and CP in spite of the fact that the Standard Model as a whole violates those symmetries.
- \bullet Axions can be cold dark matter if their mass is in the $\mu\text{eV}\text{-meV}$ range.
- Can interact via coupling with two photons

Axion Search with Solar Heleoscopes

CAST (Cern Axion Solar Telescope)

• New uses for old accelerator parts

- Uses a decommissioned LHC dipole magnet (8 Tesla) to convert solar axions into detectable x-ray photons
- Can measures signal / background by pointing at / away from the sun

Shining Light Through Walls

- So far, axion searches have been limited to detecting existing relic axions or thermally produced solar axions
 - What if we can make and detect our own axions?

 Effect is suppressed by g²_{ayy} but, rate can be enhanced by placing system in a resonant cavity.

Axion Search with Crystals

Axion Source

- Black body photons convert into axions in the presence of the intense electromagnetic field inside the Sun.
 - The keV scale energy range of the solar interior creates an axion flux on earth given by *These are not the relic DM particles, but are the

Axion Detection

• Conversion of axion into x-rays via the Primakoff effect

 The axion interacts with a virtual photon from the strong electric field near a nucleus and converts into a real photon

Axion Detection

• X-ray event rate in a crystal is enhanced when Bragg condition is met

 Coherent interference of x-rays when wavelength is an integer multiple of the crystal spacing

$$\begin{split} R(E) &= \int 2c \frac{d^3 q}{q^2} \cdot \frac{d\Phi}{dE} \cdot \left[\frac{g_{a\gamma\gamma}^2}{16\pi^2} |F(\vec{q})|^2 \sin^2(2\theta)\right] \\ F(\vec{q}) &= k^2 \int d^3 x \; \phi(\vec{x}) e^{i\vec{q}\cdot\vec{x}} \\ \phi(\vec{x}) &= \sum_i \phi_i(\vec{x}) = \sum_i \frac{Ze}{4\pi |\vec{x} - \vec{x}_i|} e^{-\frac{|\vec{x} - \vec{x}_i|}{r}} = \sum_G \; n_G e^{i\vec{G}\cdot\vec{x}} \\ E_a \; &= \; \hbar c \frac{|\vec{G}|^2}{2\hat{u}\cdot\vec{G}} \end{split}$$

Axion Detection

• Event rate is a function of time of date and detector orientation

• The figures show events rates for two different crystal orientations

Massive Axion Limits

Axion Search with Microwave Resonators

ADMX

- Signal appears as an increase in detected power at a given frequency
- Phase II of the experiment to be cooled to <100 mK to minimize thermal noise

Final Words

• What if there aren't any WIMPs?

- The techniques presented here describe the detection of ANY particles that couples with either a photon, electron, or nucleus (our three favorite, and most manipulable tools)
- As the couplings get weaker, or the densities smaller, we have to keep up by reducing the backgrounds

The truth is • If it is out there, ... we will see it

Fox Mulder, X-Files