Infinite region

The method can be combined with the Laurent transform Laurent.htm with the variable changes. for\BLI2.FOR

Eqn 13

Immediately this raises the question of what about t = 0.

      FUNCTION FTEST(T)

      IMPLICIT REAL*8 (A-H,O-Z)

      T=MAX(1D-2,T)

      IF(T.EQ.1)THEN

        FTEST=0

        RETURN

      ENDIF

      X=T/(1-T)

      FTEST=1/X**12-1/X**6

      RETURN

      END

 

Figure 1 The Lennard Jones potential with a Laurent Transform.

                Note that while the above gives a visual view of the function, that the integral in x from 0 to infinity is

Eqn 14

Since the regions are not uniform, this is

            The changes are all in the function

      FUNCTION FTEST(T)

      IMPLICIT REAL*8 (A-H,O-Z)

      T=MAX(1D-2,T)

      IF(T.EQ.1)THEN

        FTEST=0

        RETURN

      ENDIF

      X=T/(1-T)

      FTEST=1/X**12-1/X**6

      FTEST=FTEST*(1+X)**2

      RETURN

      END

Figure 2 Integrand in integral of LJ potential.  Note that integral is approximately infinite.

A more reasonable integrand is

for\bli4.for

      IMPLICIT REAL*8 (A-H,O-Z)

      DIMENSION XI(2001),FI(2001),ERR(2001)

      EXTERNAL FTEST

      DATA AM/.7D0/,A/3.7D0/

      B=0

      E=1

      NP=128

      CALL BLI(XI,FI,ERR,B,E,NP,FTEST)

      OPEN(1,FILE='BLI.OUT')

      WRITE(1,'(2G12.4)')(XI(I),FI(I),I=1,NP)

      ANUM=0

      DO I=1,NP-1

        ANUM=ANUM+(FI(I)+FI(I+1))*(XI(I+1)-XI(I))

      ENDDO

      ANUM=.5D0*ANUM

      PRINT*,'  ANUM  ',ANUM

      ANAL=ATAN(AM/A)

      PRINT*,'  ANAL  ',ANAL

      STOP

      END

 

      FUNCTION FTEST(T)

      IMPLICIT REAL*8 (A-H,O-Z)

      DATA AM/.7D0/,A/3.7D0/

      T=MAX(1D-12,T)

      IF(T.EQ.1)THEN

        FTEST=0

        RETURN

      ENDIF

      X=T/(1-T)

      FTEST=SIN(AM*X)*EXP(-A*X)/X

      FTEST=FTEST*(1+X)**2

      RETURN

      END

RUN

  ANUM         0.187003938004170

  ANAL         0.186979269918911

                The function BLI is a linear version of findfun described in the Class2000 notes.

Assignment 

 

 

  1. Over the range 0 to infinity

for a > 0